Cardiomyocyte-Specific Long Noncoding RNA Regulates Alternative Splicing of the Triadin Gene in the Heart

被引:17
|
作者
Zhao, Yuanbiao [1 ]
Riching, Andrew S. [1 ,2 ,3 ]
Knight, Walter E. [1 ,2 ,3 ]
Chi, Congwu [1 ,2 ,3 ]
Broadwell, Lindsey J. [7 ,8 ]
Du, Yanmei [1 ]
Abdel-Hafiz, Mostafa [4 ]
Ambardekar, Amrut, V [1 ,3 ]
Irwin, David C. [5 ]
Proenza, Catherine [6 ]
Xu, Hongyan [10 ]
Leinwand, Leslie A. [8 ,9 ]
Walker, Lori A. [1 ]
Woulfe, Kathleen C. [1 ]
Bristow, Michael R. [1 ]
Buttrick, Peter M. [1 ]
Song, Kunhua [1 ,2 ,3 ]
机构
[1] Univ Colorado, Dept Med, Div Cardiol, Anschutz Med Campus, Aurora, CO USA
[2] Univ Colorado, Gates Ctr Regenerat Med & Stem Cell Biol, Anschutz Med Campus, Aurora, CO USA
[3] Univ Colorado, Consortium Fibrosis Res & Translat, Anschutz Med Campus, Aurora, CO USA
[4] Univ Colorado, Dept Bioengn, Anschutz Med Campus, Aurora, CO USA
[5] Univ Colorado, Dept Med, Cardiovasc & Pulm Res Lab, Anschutz Med Campus, Aurora, CO USA
[6] Univ Colorado, Dept Physiol & Biophys, Anschutz Med Campus, Aurora, CO USA
[7] Univ Colorado, Dept Biochem, Boulder, CO 80309 USA
[8] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA
[9] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA
[10] Augusta Univ, Med Coll Georgia, Dept Populat Hlth Sci, Augusta, GA USA
基金
美国国家卫生研究院;
关键词
arrhythmias; cardiac; heart failure; myocytes; RNA; long noncoding; splicing; alternative; RYANODINE RECEPTOR; PROTEIN-PROTEIN; CA2+ RELEASE; CALSEQUESTRIN; CONTRACTILITY; EXPRESSION; DOMAIN;
D O I
10.1161/CIRCULATIONAHA.121.058017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Abnormalities in Ca2+ homeostasis are associated with cardiac arrhythmias and heart failure. Triadin plays an important role in Ca2+ homeostasis in cardiomyocytes. Alternative splicing of a single triadin gene produces multiple triadin isoforms. The cardiac-predominant isoform, mouse MT-1 or human Trisk32, is encoded by triadin exons 1 to 8. In humans, mutations in the triadin gene that lead to a reduction in Trisk32 levels in the heart can cause cardiac dysfunction and arrhythmias. Decreased levels of Trisk32 in the heart are also common in patients with heart failure. However, mechanisms that maintain triadin isoform composition in the heart remain elusive. Methods: We analyzed triadin expression in heart explants from patients with heart failure and cardiac arrhythmias and in hearts from mice carrying a knockout allele for Trdn-as, a cardiomyocyte-specific long noncoding RNA encoded by the antisense strand of the triadin gene, between exons 9 and 11. Catecholamine challenge with isoproterenol was performed on Trdn-as knockout mice to assess the role of Trdn-as in cardiac arrhythmogenesis, as assessed by ECG. Ca2+ transients in adult mouse cardiomyocytes were measured with the IonOptix platform or the GCaMP system. Biochemistry assays, single-molecule fluorescence in situ hybridization, subcellular localization imaging, RNA sequencing, and molecular rescue assays were used to investigate the mechanisms by which Trdn-as regulates cardiac function and triadin levels in the heart. Results: We report that Trdn-as maintains cardiac function, at least in part, by regulating alternative splicing of the triadin gene. Knockout of Trdn-as in mice downregulates cardiac triadin, impairs Ca2+ handling, and causes premature death. Trdn-as knockout mice are susceptible to cardiac arrhythmias in response to catecholamine challenge. Normalization of cardiac triadin levels in Trdn-as knockout cardiomyocytes is sufficient to restore Ca2+ handling. Last, Trdn-as colocalizes and interacts with serine/arginine splicing factors in cardiomyocyte nuclei and is essential for efficient recruitment of splicing factors to triadin precursor mRNA. Conclusions: These findings reveal regulation of alternative splicing as a novel mechanism by which a long noncoding RNA controls cardiac function. This study indicates potential therapeutics for heart disease by targeting the long noncoding RNA or pathways regulating alternative splicing.
引用
收藏
页码:699 / 714
页数:16
相关论文
共 50 条
  • [21] An RNA matchmaker protein regulates the activity of the long noncoding RNA HOTAIR
    Meredith, Emily K.
    Balas, Maggie M.
    Sindy, Karla
    Haislop, Krystal
    Johnson, Aaron M.
    RNA, 2016, 22 (07) : 995 - 1010
  • [22] A heart-enriched antisense long non-coding RNA regulates the balance between cardiac and skeletal muscle triadin
    Zhang, Lu
    Salgado-Somoza, Antonio
    Vausort, Melanie
    Leszek, Przemyslaw
    Devaux, Yvan
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2018, 1865 (02): : 247 - 258
  • [23] Posttranscriptional Gene Regulation by Long Noncoding RNA
    Yoon, Je-Hyun
    Abdelmohsen, Kotb.
    Gorospe, Myriam
    JOURNAL OF MOLECULAR BIOLOGY, 2013, 425 (19) : 3723 - 3730
  • [24] Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation
    Ballantyne, Margaret D.
    Pinel, Karine
    Dakin, Rachel
    Vesey, Alex T.
    Diver, Louise
    Mackenzie, Ruth
    Garcia, Raquel
    Welsh, Paul
    Sattar, Naveed
    Hamilton, Graham
    Joshi, Nikhil
    Dweck, Marc R.
    Miano, Joseph M.
    McBride, Martin W.
    Newby, David E.
    McDonald, Robert A.
    Baker, Andrew H.
    CIRCULATION, 2016, 133 (21) : 2050 - 2065
  • [25] Functional Implications of RNA Splicing for Human Long Intergenic Noncoding RNAs
    Chen, Feng-Chi
    Pan, Chia-Lin
    Lin, Hsuan-Yu
    EVOLUTIONARY BIOINFORMATICS, 2014, 10 : 219 - 228
  • [26] The long noncoding RNA CHROME regulates cholesterol homeostasis in primates
    Hennessy, Elizabeth J.
    van Solingen, Coen
    Scacalossi, Kaitlyn R.
    Ouimet, Mireille
    Afonso, Milessa S.
    Prins, Jurrien
    Koelwyn, Graeme J.
    Sharma, Monika
    Ramkhelawon, Bhama
    Carpenter, Susan
    Busch, Albert
    Chernogubova, Ekaterina
    Matic, Ljubica Perisic
    Hedin, Ulf
    Maegdefessel, Lars
    Caffrey, Brian E.
    Hussein, Maryem A.
    Ricci, Emiliano P.
    Temel, Ryan E.
    Garabedian, Michael J.
    Berger, Jeffrey S.
    Vickers, Kasey C.
    Kanke, Matthew
    Sethupathy, Praveen
    Teupser, Daniel
    Holdt, Lesca M.
    Moore, Kathryn J.
    NATURE METABOLISM, 2019, 1 (01) : 98 - 110
  • [27] Long Noncoding RNA: a New Player of Heart Failure?
    Papait, Roberto
    Kunderfranco, Paolo
    Stirparo, Giuliano Giuseppe
    Latronico, Michael V. G.
    Condorelli, Gianluigi
    JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2013, 6 (06) : 876 - 883
  • [28] Long noncoding RNA dysregulation in ischemic heart failure
    Simona Greco
    Germana Zaccagnini
    Alessandra Perfetti
    Paola Fuschi
    Rea Valaperta
    Christine Voellenkle
    Serenella Castelvecchio
    Carlo Gaetano
    Nicoletta Finato
    Antonio Paolo Beltrami
    Lorenzo Menicanti
    Fabio Martelli
    Journal of Translational Medicine, 14
  • [29] RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19
    Rigaud, Vagner Oliveira Carvalho
    Hoy, Robert C.
    Kurian, Justin
    Zarka, Clare
    Behanan, Michael
    Brosious, Isabella
    Pennise, Jennifer
    Patel, Tej
    Wang, Tao
    Johnson, Jaslyn
    Kraus, Lindsay M.
    Mohsin, Sadia
    Houser, Steven R.
    Khan, Mohsin
    CIRCULATION, 2023, 147 (04) : 324 - 337
  • [30] Novel Lipid Long Intervening Noncoding RNA, Oligodendrocyte Maturation-Associated Long Intergenic Noncoding RNA, Regulates the Liver Steatosis Gene Stearoyl-Coenzyme A Desaturase As an Enhancer RNA
    Benhammou, Jihane N.
    Ko, Arthur
    Alvarez, Marcus
    Kaikkonen, Minna U.
    Rankin, Carl
    Garske, Kristina M.
    Padua, David
    Bhagat, Yash
    Kaminska, Dorota
    Karja, Vesa
    Pihlajamaki, Jussi
    Pisegna, Joseph R.
    Pajukant, Paivi
    HEPATOLOGY COMMUNICATIONS, 2019, 3 (10) : 1356 - 1372