Solar syngas production from CO2 and H2O in a two-step thermochemical cycle via Zn/ZnO redox reactions: Thermodynamic cycle analysis

被引:105
作者
Loutzenhiser, Peter G. [1 ]
Steinfeld, Aldo [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[2] Paul Scherrer Inst, Solar Technol Lab, CH-5232 Villigen, Switzerland
基金
瑞士国家科学基金会;
关键词
Solar; Thermochemical cycle; Syngas; Zn; ZnO; CO2; HYDROGEN-PRODUCTION; CAPTURE; AIR; CARBONATION; ENERGY;
D O I
10.1016/j.ijhydene.2011.06.128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar syngas production from CO2 and H2O is considered in a two-step thermochemical cycle via Zn/ZnO redox reactions, encompassing: 1) the ZnO thermolysis to Zn and O-2 using concentrated solar radiation as the source of process heat, and 2) Zn reacting with mixtures of H2O and CO2 yielding high-quality syngas (mainly H-2 and CO) and ZnO; the ZnO is recycled to the first, solar step, resulting in net reaction beta CO2 + (1 - beta)H2O -> beta CO + (1 - beta)H-2. Syngas is further processed to liquid hydrocarbon fuels via Fischer-Tropsch or other catalytic processes. Second-law thermodynamic analysis is applied to determine the cycle efficiencies attainable with and without heat recuperation for varying molar fractions of CO2:H2O and solar reactor temperatures in the range 1900-2300 K. Considered is the energy penalty of using Ar dilution in the solar step below 2235 K for shifting the equilibrium to favor Zn production. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12141 / 12147
页数:7
相关论文
共 26 条
[11]   USE OF SOLAR-ENERGY TO REDUCE CARBON-DIOXIDE [J].
MARTIN, LR .
SOLAR ENERGY, 1980, 24 (03) :271-277
[12]   Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles [J].
Miller, James E. ;
Allendorf, Mark D. ;
Diver, Richard B. ;
Evans, Lindsey R. ;
Siegel, Nathan P. ;
Stuecker, John N. .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (14) :4714-4728
[13]   CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor [J].
Nikulshina, V. ;
Gebald, C. ;
Steinfeld, A. .
CHEMICAL ENGINEERING JOURNAL, 2009, 146 (02) :244-248
[14]   Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle [J].
Nikulshina, V. ;
Galvez, M. E. ;
Steinfeld, A. .
CHEMICAL ENGINEERING JOURNAL, 2007, 129 (1-3) :75-83
[15]  
Nikulshina V, 2006, ENERGY, V31, P1715, DOI 10.1016/j.energy.2005.09.014
[16]   CO2 capture from air via CaO-carbonation using a solar-driven fluidized bed reactor-Effect of temperature and water vapor concentration [J].
Nikulshina, V. ;
Steinfeld, A. .
CHEMICAL ENGINEERING JOURNAL, 2009, 155 (03) :867-873
[17]   Solar-Thermal Production of Renewable Hydrogen [J].
Perkins, Christopher ;
Weimer, Alan W. .
AICHE JOURNAL, 2009, 55 (02) :286-293
[18]   Using computational fluid dynamics modeling to improve the performance of a solar CO2 converter [J].
Price, Ralph J. ;
Fletcher, Thomas H. ;
Jensen, Reed J. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (07) :1959-1967
[19]   Modeling the direct solar conversion of CO2 to CO and O2 [J].
Price, RJ ;
Morse, DA ;
Hardy, SL ;
Fletcher, TH ;
Hill, SC ;
Jensen, RJ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (10) :2446-2453
[20]  
Roine A., 2002, HSC CHEM