An h-p version of the continuous Petrov-Galerkin method for Volterra delay-integro-differential equations

被引:7
|
作者
Wang, Lina [1 ]
Yi, Lijun [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Volterra delay-integro-differential equations; h-p version; Continuous Petrov-Galerkin method; Error analysis; FINITE-ELEMENT-METHOD; INITIAL-VALUE PROBLEMS; SPECTRAL COLLOCATION METHODS; PRIORI ERROR ANALYSIS; RUNGE-KUTTA METHODS; INTEGRODIFFERENTIAL EQUATIONS; PARABOLIC PROBLEMS; PANTOGRAPH-TYPE; LEGENDRE; KERNELS;
D O I
10.1007/s10444-017-9531-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an h-p version of the continuous Petrov-Galerkin time stepping method for Volterra integro-differential equations with proportional delays. We derive a priori error bounds in the L (2)-, H (1)- and L (a)-norm that are explicit in the local time steps, the local approximation orders, and the local regularity of the exact solution. Numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:1437 / 1467
页数:31
相关论文
共 50 条