A Compact Surface Potential Model for Flexible Radio Frequency AlGaN/GaN High-Electron-Mobility Transistor

被引:10
作者
Wang, Yan [1 ,2 ]
Wu, Qingzhi [1 ,2 ]
Yan, Bo [1 ,2 ]
Xu, Ruimin [1 ,2 ]
Xu, Yuehang [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
基金
中国国家自然科学基金;
关键词
Wide band gap semiconductors; Aluminum gallium nitride; Strain; III-V semiconductor materials; Aluminum nitride; Integrated circuit modeling; Radio frequency; Flexible; gallium nitride (GaN); high-electron-mobility transistor (HEMT); radio frequency (RF); strain effects model; LARGE-SIGNAL MODEL; THRESHOLD VOLTAGE; POWER-DENSITY; GAN; HEMT; TEMPERATURE; EXTRACTION; STRESS; POLARIZATION; CHARGES;
D O I
10.1109/TMTT.2021.3102237
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compact model of flexible radio frequency (RF) electronic devices is crucial for flexible circuit designs. In this article, a compact model, including external strain effects for flexible RF gallium nitride (GaN) high-electron-mobility transistor, is presented. First, the carrier density and threshold voltage with external mechanical uniaxial strain is analytically characterized by introducing the strained piezoelectric charge Delta sigma , Schottky barrier height $Delta phi_{B}$ , and surface state density $D_{{it}}$ into the model. Then, the variations of the conduction band offset at the AlGaN/AlN and AlN/GaN interfaces are considered. Finally, the complete large-signal model is established after embedding strain effect into intrinsic drain current and nonlinear capacitance models. The proposed model is verified by measurements, including direct current I-V characteristics, small-signal S-parameters up to 40 GHz, and large-signal power performance--output power, efficiency, and gain. The proposed model will be useful for the RF application of flexible electronics.
引用
收藏
页码:315 / 322
页数:8
相关论文
共 62 条
[1]   Physics-Based Multi-Bias RF Large-Signal GaN HEMT Modeling and Parameter Extraction Flow [J].
Ahsan, Sheikh Aamir ;
Ghosh, Sudip ;
Khandelwal, Sourabh ;
Chauhan, Yogesh Singh .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2017, 5 (05) :310-319
[2]   Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures [J].
Ambacher, O ;
Smart, J ;
Shealy, JR ;
Weimann, NG ;
Chu, K ;
Murphy, M ;
Schaff, WJ ;
Eastman, LF ;
Dimitrov, R ;
Wittmer, L ;
Stutzmann, M ;
Rieger, W ;
Hilsenbeck, J .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (06) :3222-3233
[3]   A NEW EMPIRICAL NONLINEAR MODEL FOR HEMT AND MESFET DEVICES [J].
ANGELOV, I ;
ZIRATH, H ;
RORSMAN, N .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1992, 40 (12) :2258-2266
[4]   Effect of substrate-induced strain in the transport properties of AlGaN/GaN heterostructures [J].
Azize, M. ;
Palacios, T. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (02)
[5]  
Azuma K., 2003, U.S. Patent, Patent No. [7 187 031, 7187031]
[6]   Spontaneous polarization and piezoelectric constants of III-V nitrides [J].
Bernardini, F ;
Fiorentini, V ;
Vanderbilt, D .
PHYSICAL REVIEW B, 1997, 56 (16) :10024-10027
[7]   Strain-induced changes in AlGaN/GaN two-dimensional electron gas structures with low surface state densities [J].
Blanton, Eric W. ;
Siegel, Gene ;
Prusnick, Timothy A. ;
Glavin, Nicholas R. ;
Snure, Michael .
APPLIED PHYSICS LETTERS, 2018, 113 (26)
[8]   Physics-based single-piece charge model for strained-Si MOSFETs [J].
Chandrasekaran, K ;
Zhou, X ;
Chiah, SB ;
Shangguan, W ;
See, GH .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (07) :1555-1562
[9]   Influence of mechanical strain on the electrical properties of flexible organic thin-film transistors [J].
Chen, Fang-Chung ;
Chen, Tzung-Da ;
Zeng, Bing-Ruei ;
Chung, Ya-Wei .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2011, 26 (03)
[10]   Epitaxial Lift-Off of Flexible GaN-Based HEMT Arrays with Performances Optimization by the Piezotronic Effect [J].
Chen, Xin ;
Dong, Jianqi ;
He, Chenguang ;
He, Longfei ;
Chen, Zhitao ;
Li, Shuti ;
Zhang, Kang ;
Wang, Xingfu ;
Wang, Zhong Lin .
NANO-MICRO LETTERS, 2021, 13 (01)