Discrete variational Lie group formulation of geometrically exact beam dynamics

被引:42
作者
Demoures, F. [1 ]
Gay-Balmaz, F. [2 ]
Leyendecker, S. [3 ]
Ober-Bloebaum, S. [4 ]
Ratiu, T. S. [1 ]
Weinand, Y. [5 ]
机构
[1] Ecole Polytech Fed Lausanne, Sect Math, CH-1015 Lausanne, Switzerland
[2] Ecole Normale Super, CNRS, Lab Meteorol Dynam, F-75005 Paris, France
[3] Univ Erlangen Nurnberg, Dept Mech Engn, D-91058 Erlangen, Germany
[4] Univ Paderborn, Dept Math, D-33098 Paderborn, Germany
[5] Ecole Polytech Fed Lausanne, Civil Engn Inst, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
FINITE-ELEMENT; CONSTRAINED DYNAMICS; LAGRANGIAN MECHANICS; EULER-POINCARE; SYSTEMS; INTEGRATORS; ENERGY; ROTATIONS; RODS; PARAMETRIZATION;
D O I
10.1007/s00211-014-0659-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to derive a structure preserving integrator for geometrically exact beam dynamics, by using a Lie group variational integrator. Both spatial and temporal discretization are implemented in a geometry preserving manner. The resulting scheme preserves both the discrete momentum maps and symplectic structures, and exhibits almost-perfect energy conservation. Comparisons with existing numerical schemes are provided and the convergence behavior is analyzed numerically.
引用
收藏
页码:73 / 123
页数:51
相关论文
共 66 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]  
[Anonymous], 2008, THESIS U MICHIGAN
[3]  
[Anonymous], ECCOMAS THEM C MULT
[4]   KIRCHHOFFS PROBLEM FOR NONLINEARLY ELASTIC RODS [J].
ANTMAN, SS .
QUARTERLY OF APPLIED MATHEMATICS, 1974, 32 (03) :221-240
[5]  
Antmann S.S., 1995, NONLINEAR PROBLEMS E
[6]   On the parametrization of finite rotations in computational mechanics - A classification of concepts with application to smooth shells [J].
Betsch, P ;
Menzel, A ;
Stein, E .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 155 (3-4) :273-305
[7]   Constrained dynamics of geometrically exact beams [J].
Betsch, P ;
Steinmann, P .
COMPUTATIONAL MECHANICS, 2003, 31 (1-2) :49-59
[8]   Frame-indifferent beam finite elements based upon the geometrically exact beam theory [J].
Betsch, P ;
Steinmann, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (12) :1775-1788
[9]   Discrete Lagrangian reduction, discrete Euler-Poincare equations, and semidirect products [J].
Bobenko, AI ;
Suris, YB .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 49 (01) :79-93
[10]   Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top [J].
Bobenko, AI ;
Suris, YB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (01) :147-188