Representations of group algebras in spaces of completely bounded maps

被引:5
作者
Smith, RR [1 ]
Spronk, N
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
group algebra; completely bounded map; extended Haagerup tensor product;
D O I
10.1512/iumj.2005.54.2551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact group, pi : G -> U(H) be a strongly continuous unitary representation, and CBsigma (B(H)) the space of normal completely bounded maps on B(H). We study the range of the map Gamma(pi) : M(G) -> CBsigma (B(H)), Gamma(pi) (mu) = integral(G) pi(s) circle times pi (s)* d mu(s), where we identify CBsigma(B(H)) with the extended Haagerup tensor product B(H) circle times(eh) B(H). We use the fact that the C*-algebra generated by integrating pi to L-1(G) is unital exactly when pi is norm continuous, to show that Gamma(pi)(L-1(G) subset of B(H)circle times(h) B(H) exactly when pi is norm continuous. For the case that G is abelian, we study F-pi(M (G)) as a subset of the Varopoulos algebra. We also characterize positive definite elements of the Varopoulos algebra in terms of completely positive operators.
引用
收藏
页码:873 / 896
页数:24
相关论文
共 25 条
  • [1] ALLEN SD, 1993, J REINE ANGEW MATH, V442, P111
  • [2] [Anonymous], 1969, CAHIERS SCI
  • [4] TENSOR-PRODUCTS OF OPERATOR-SPACES
    BLECHER, DP
    PAULSEN, VI
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) : 262 - 292
  • [5] THE DUAL OF THE HAAGERUP TENSOR PRODUCT
    BLECHER, DP
    SMITH, RR
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 45 : 126 - 144
  • [6] Effros E. G., 2000, Operator spaces, V23
  • [7] Effros EG, 2003, J OPERAT THEOR, V50, P131
  • [8] MODULE MAPS AND HOCHSCHILD-JOHNSON COHOMOLOGY
    EFFROS, EG
    KISHIMOTO, A
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (02) : 257 - 276
  • [9] EFFROS EG, 1993, RES NOTES MATH, V5, P125
  • [10] Eymard P., 1964, Bull. Soc. Math. Fr, V92, P181, DOI [DOI 10.24033/BSMF.1607, 10.24033/bsmf.1607]