MARGIN-BASED RANDOM FOREST FOR IMBALANCED LAND COVER CLASSIFICATION

被引:0
作者
Feng, W. [1 ]
Boukir, S. [2 ]
Huang, W. [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Bordeaux INP, G&E Lab, EA 4592, F-33600 Pessac, France
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Class imbalance; random forest; margin; multiple classifier; remote sensing; sampling; AREA;
D O I
10.1109/igarss.2019.8898652
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The problem of class imbalance is often encountered in remote sensing data and has a negative effect on the classification performance of supervised classifiers even in ensemble models. The ensemble margin is a fundamental concept in ensemble learning with potential effectiveness in improving the classification of remote sensing data. This paper proposes a novel margin based extended random forest algorithm to address the class imbalance issues in the difficult context of remote sensing classification. This algorithm combines ensemble learning with data sampling. A comparative analysis is conducted with respect to standard random forest, under-sampling and over-sampling combined ensembles.
引用
收藏
页码:3085 / 3088
页数:4
相关论文
共 23 条
[1]  
[Anonymous], 2017, THESIS
[2]  
Asuncion A., 2007, Uci machine learning repository, university of california, irvine, school of information and computer sciences
[3]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[4]  
Boukir S., 2012, ISPRS Annals of the Photogrammetry. Remote Sens. Spatial Inform. Sci., DOI [10.5194/isprsannals-I-7-111-2012, DOI 10.5194/ISPRSANNALS-I-7-111-2012]
[5]  
Boukir S, 2017, IEEE IMAGE PROC, P1302, DOI 10.1109/ICIP.2017.8296492
[6]  
Boukir S, 2013, IEEE IMAGE PROC, P2602, DOI 10.1109/ICIP.2013.6738536
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]  
Chawla N. V., 2014, J ARTIF INT RES, V16, P321
[9]   Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features [J].
Du, Peijun ;
Samat, Alim ;
Waske, Bjoern ;
Liu, Sicong ;
Li, Zhenhong .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 105 :38-53
[10]   Weight-Based Rotation Forest for Hyperspectral Image Classification [J].
Feng, Wei ;
Bao, Wenxing .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) :2167-2171