Technology Trends and Challenges for Large-Scale Scientific Visualization

被引:1
作者
Ahrens, James [1 ]
机构
[1] Los Alamos Natl Lab, Informat Sci Technol Inst, Los Alamos, NM 87545 USA
关键词
D O I
10.1109/MCG.2022.3176325
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Scientific visualization is a key approach to understanding the growing massive streams of data from scientific simulations and experiments. In this article, I review technology trends including the positive effects of Moore's law on science, the significant gap between processing and data storage speeds, the emergence of hardware accelerators for ray-tracing, and the availability of robust machine learning techniques. These trends represent changes to the status quo and present the scientific visualization community with a new set of challenges. A major challenge involves extending our approaches to visualize the modern scientific process, which includes scientific verification and validation. Another key challenge to the community is the growing number, size, and complexity of scientific datasets. A final challenge is to take advantage of emerging technology trends in custom hardware and machine learning to significantly improve the large-scale data visualization process.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 16 条
[1]   An Image-based Approach to Extreme Scale In Situ Visualization and Analysis [J].
Ahrens, James ;
Jourdain, Sebastien ;
O'Leary, Patrick ;
Patchett, John ;
Rogers, David H. ;
Petersen, Mark .
SC14: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2014, :424-434
[2]  
Ayachit Utkarsh, 2024, P 1 WORKSH IN SIT IN, DOI [DOI 10.1145/2828612.28286242, 10.1145/2828612]
[3]   Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization [J].
Bertini, Enrico ;
Tatu, Andrada ;
Keim, Daniel .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) :2203-2212
[4]  
Caswell Hal, 2001, pi
[5]  
Chen J., 2013, DEP ENERGY ADV SCI C
[6]   A terminology for in situ visualization and analysis systems [J].
Childs, Hank ;
Ahern, Sean D. ;
Ahrens, James ;
Bauer, Andrew C. ;
Bennett, Janine ;
Bethel, E. Wes ;
Bremer, Peer-Timo ;
Brugger, Eric ;
Cottam, Joseph ;
Dorier, Matthieu ;
Dutta, Soumya ;
Favre, Jean M. ;
Fogal, Thomas ;
Frey, Steffen ;
Garth, Christoph ;
Geveci, Berk ;
Godoy, William F. ;
Hansen, Charles D. ;
Harrison, Cyrus ;
Hentschel, Bernd ;
Insley, Joseph ;
Johnson, Chris R. ;
Klasky, Scott ;
Knoll, Aaron ;
Kress, James ;
Larsen, Matthew ;
Lofstead, Jay ;
Ma, Kwan-Liu ;
Malakar, Preeti ;
Meredith, Jeremy ;
Moreland, Kenneth ;
Navratil, Paul ;
O'Leary, Patrick ;
Parashar, Manish ;
Pascucci, Valerio ;
Patchett, John ;
Peterka, Tom ;
Petruzza, Steve ;
Podhorszki, Norbert ;
Pugmire, David ;
Rasquin, Michel ;
Rizzi, Silvio ;
Rogers, David H. ;
Sane, Sudhanshu ;
Sauer, Franz ;
Sisneros, Robert ;
Shen, Han-Wei ;
Usher, Will ;
Vickery, Rhonda ;
Vishwanath, Venkatram .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2020, 34 (06) :676-691
[7]  
Hey T., 2009, 4 PARADIGM DATA INTE
[8]   Top scientific visualization research problems [J].
Johnson, C .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2004, 24 (04) :13-17
[9]   An Entropy-Based Approach for Identifying User-Preferred Camera Positions [J].
Marsaglia, Nicole ;
Kawakami, Yuya ;
Schwartz, Samuel D. ;
Fields, Stefan ;
Childs, Hank .
2021 IEEE 11TH SYMPOSIUM ON LARGE DATA ANALYSIS AND VISUALIZATION (LDAV 2021), 2021, :73-83
[10]   Trust, but Verify: Optimistic Visualizations of Approximate Queries for Exploring Big Data [J].
Moritz, Dominik ;
Fisher, Danyel ;
Ding, Bolin ;
Wang, Chi .
PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), 2017, :2904-2915