Metrization of Idempotent Convex Compacta

被引:0
作者
Nykyforchyn, Oleh [1 ,2 ]
Savchyn, Mariia [2 ]
机构
[1] Casimir Great Univ, Inst Math, Bydgoszcz, Poland
[2] Vasyl Stefanyk Precarpathian Natl Univ, Dept Math & Comp Sci, Ivano Frankivsk, Ukraine
关键词
I-convex compactum; idempotent semimodule; locally convex space; Vietoris topology; metrization;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a convenient subbase on the second hyperspace of a compactum with the Vietoris topology, we prove that the mapping that takes each closed non-empty subset A of an I-convex compactum X to its closed idempotent convex hull is continuous. This implies that each neighborhood of the diagonal Delta(X) subset of X x X contains an idempotent convex neighborhood. The main result is the theorem that the topology on an idempotent convex compactum X is determined by a family of idempotent convex pseudometrics (with one idempotent convex metric if X is metrizable).
引用
收藏
页码:717 / 730
页数:14
相关论文
共 50 条
  • [1] EXPLICIT METRIZATION
    SHORE, SD
    SAWYER, LJ
    PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS, 1993, 704 : 328 - 336
  • [2] METRIZATION OF LINEAR CONNECTIONS
    Vanzurova, Alena
    Zackova, Petra
    APLIMAT 2009: 8TH INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, : 453 - 464
  • [3] A parallel metrization theorem
    Taras Banakh
    Olena Hryniv
    European Journal of Mathematics, 2020, 6 : 110 - 113
  • [4] A parallel metrization theorem
    Banakh, Taras
    Hryniv, Olena
    EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (01) : 110 - 113
  • [5] A new approach to metrization
    Arenas, FG
    Sánchez-Granero, MA
    TOPOLOGY AND ITS APPLICATIONS, 2002, 123 (01) : 15 - 26
  • [6] Weak developments and metrization
    Alleche, B
    Arhangel'skii, AV
    Calbrix, J
    TOPOLOGY AND ITS APPLICATIONS, 2000, 100 (01) : 23 - 38
  • [7] Topological symmetry and the Theory of Metrization
    Hung, HH
    PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS: ELEVENTH SUMMER CONFERENCE AT THE UNIVERSITY OF SOUTHERN MAINE, 1996, 806 : 207 - 213
  • [8] On the metrization problem of ν-generalized metric spaces
    Nguyen Van Dung
    Vo Thi Le Hang
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1295 - 1303
  • [9] Metrization and Simulation of Controlled Hybrid Systems
    Burden, Samuel A.
    Gonzalez, Humberto
    Vasudevan, Ramanarayan
    Bajcsy, Ruzena
    Sastry, S. Shankar
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2307 - 2320
  • [10] D1 Spaces and Their Metrization
    戴牧民
    刘川
    东北数学, 1995, (02) : 215 - 220