Asymptotic results with estimating equations for time-evolving clustered data

被引:0
|
作者
Dumitrescu, Laura [1 ]
Schiopu-Kratina, Ioana [2 ]
机构
[1] Victoria Univ Wellington, Sch Math & Stat, Wellington 6140, New Zealand
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
关键词
Central limit theorem; Clustered data; Estimating equations; Optimal parameter estimation; Stochastic regressors; Strong consistency; REGRESSION-MODELS; LONGITUDINAL DATA; SERIES; GEE;
D O I
10.1016/j.jspi.2021.01.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the existence, strong consistency and asymptotic normality of estimators obtained from estimating functions, that are p-dimensional martingale transforms. The problem is motivated by the analysis of evolutionary clustered data, with distributions belonging to the exponential family, and which may also vary in terms of other component series. Within a quasi-likelihood approach, we construct estimating equations, which accommodate different forms of dependency among the components of the response vector and establish multivariate extensions of results on linear and generalized linear models, with stochastic covariates. Furthermore, we characterize estimating functions which are asymptotically optimal, in that they lead to confidence regions for the regression parameters which are of minimum size, asymptotically. Results from a simulation study and an application to a real dataset are included. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 61
页数:21
相关论文
共 50 条
  • [1] Learning on time-evolving data
    Zhang, Chang-Shui
    Zhang, Jian-Wen
    Jisuanji Xuebao/Chinese Journal of Computers, 2013, 36 (02): : 310 - 316
  • [2] On the generation of time-evolving regional data
    Tzouramanis, T
    Vassilakopoulos, M
    Manolopoulos, Y
    GEOINFORMATICA, 2002, 6 (03) : 207 - 231
  • [3] On the Generation of Time-Evolving Regional Data*
    Theodoros Tzouramanis
    Michael Vassilakopoulos
    Yannis Manolopoulos
    GeoInformatica, 2002, 6 : 207 - 231
  • [4] Asymptotic results with generalized estimating equations for longitudinal data
    Balan, RM
    Schiopu-Kratina, I
    ANNALS OF STATISTICS, 2005, 33 (02): : 522 - 541
  • [5] Visualising Time-evolving Semantic Biomedical Data
    Pereira, Arnaldo
    Rafael Almeida, Joao
    Lopes, Rui Pedro
    Oliveira, Jose Luis
    2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2022, : 264 - 269
  • [6] Probabilistic clustering of time-evolving distance data
    Vogt, Julia E.
    Kloft, Marius
    Stark, Stefan
    Raman, Sudhir S.
    Prabhakaran, Sandhya
    Roth, Volker
    Raetsch, Gunnar
    MACHINE LEARNING, 2015, 100 (2-3) : 635 - 654
  • [7] Comparison of access methods for time-evolving data
    Salzberg, B
    Tsotras, VJ
    ACM COMPUTING SURVEYS, 1999, 31 (02) : 158 - 221
  • [8] Probabilistic clustering of time-evolving distance data
    Julia E. Vogt
    Marius Kloft
    Stefan Stark
    Sudhir S. Raman
    Sandhya Prabhakaran
    Volker Roth
    Gunnar Rätsch
    Machine Learning, 2015, 100 : 635 - 654
  • [9] A Framework for Clustering Categorical Time-Evolving Data
    Cao, Fuyuan
    Liang, Jiye
    Bai, Liang
    Zhao, Xingwang
    Dang, Chuangyin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (05) : 872 - 882
  • [10] Control of reaction-diffusion equations on time-evolving manifolds
    Rossi, Francesco
    Duteil, Nastassia Pouradier
    Yakoby, Nir
    Piccoli, Benedetto
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 1614 - 1619