Inverse problem of fractional calculus of variations for partial differential equations

被引:22
作者
Cresson, Jacky [1 ,2 ]
机构
[1] Univ Pau & Pays Adour, Lab Math Appliques Pau, CNRS, UMR 5142, F-64013 Pau, France
[2] Observ Paris, IMCCE, CNRS, UMR 8028, F-75014 Paris, France
关键词
Fractional calculus; Fractional calculus of variations; Continuous Lagrangian systems; Fractional embedding theory; DIFFUSION;
D O I
10.1016/j.cnsns.2009.05.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The current paper aims at finding out a Lagrangian structure for some partial differential equations including the Stokes equations, the fractional wave equation, the diffusion or fractional diffusion equations, using the fractional embedding theory of continuous Lagrangian systems. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:987 / 996
页数:10
相关论文
共 17 条
[1]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[4]  
Carpinteri A., 1997, Fractals and Fractional Calculus in Continuum Mechanics
[5]  
CRESSON J, 2008, NONDIFFERENTIABLE EM, P28
[6]  
CRESSON J, ARXIV081132862008
[7]   Fractional embedding of differential operators and Lagrangian systems [J].
Cresson, Jacky .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (03)
[8]   Stochastic embedding of dynamical systems [J].
Cresson, Jacky ;
Darses, Sebastien .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[9]   Variational formulation for the stationary fractional advection dispersion equation [J].
Ervin, VJ ;
Roop, JP .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (03) :558-576
[10]  
Gorenflo R., 1997, Fractional calculus: integral and differential equations of fractional order, DOI DOI 10.1007/978-3-7091-2664-6_5