The two phase stochastic Stefan problem

被引:25
作者
Barbu, V [1 ]
Da Prato, G
机构
[1] Univ Iasi, Iasi 6600, Romania
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
stochastic Stefan problem; invariant measures; Wiener process; transition semigroup; Kolmogorov operator;
D O I
10.1007/s00440-002-0232-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work is concerned with existence for a stochastic free boundary problem arising in phase transition (the Stefan two phase problem). The existence of an invariant ergodic measure associated with the corresponding transition semigroup P(t) is also proved, together with an integration by parts formula for the generator of P(t).
引用
收藏
页码:544 / 560
页数:17
相关论文
共 12 条
[1]  
[Anonymous], DIFFERENTIAL INTEGRA
[2]  
Barbu V., 1993, ANAL CONTROL NONLINE
[3]  
BARBU V, UNPUB PARABOLIC OBST
[4]   Stochastic variational inequalities in infinite dimensional spaces [J].
Bensoussan, A ;
Rascanu, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (1-2) :19-54
[5]  
BREZIS H, 1971, CONTRIBUTIONS NONLIN, P101
[6]   Some properties of invariant measures of non symmetric dissipative stochastic systems [J].
Da Prato, G ;
Debussche, A ;
Goldys, B .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (03) :355-380
[7]  
DA PRATO G., 1996, Ergodicity for infinite dimensional systems, V229
[8]  
Elliott C.M., 1982, PITMAN RES NOTES MAT, V59
[9]   STOCHASTIC VARIATIONAL-INEQUALITIES OF PARABOLIC TYPE [J].
HAUSSMANN, UG ;
PARDOUX, E .
APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 20 (02) :163-192
[10]  
Lions J. L., 1969, QUELQUES METHODES RE