CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome

被引:75
作者
Zhou, Jin Chuan [1 ]
Janska, Agnieszka [2 ]
Goswami, Panchali [1 ]
Renault, Ludovic [1 ,4 ]
Ali, Ferdos Abid [1 ]
Kotecha, Abhay [3 ]
Diffley, John F. X. [2 ]
Costa, Alessandro [1 ]
机构
[1] Francis Crick Inst, Macromol Machines Lab, London NW1 1AT, England
[2] Francis Crick Inst, Chromosome Replicat Lab, London NW1 1AT, England
[3] Univ Oxford, Wellcome Trust Ctr Human Genet, Div Struct Biol, Oxford OX3 7BN, England
[4] NeCEN, Gorlaeus Lab, NL-2333 Leiden, Netherlands
基金
欧洲研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
DNA replication; CMG helicase; DNA polymerase; single-particle electron microscopy; DNA-POLYMERASE-EPSILON; REPLICATION FORK; MCM2-7; HELICASE; ARCHAEAL MCM; CATALYTIC DOMAINS; STRUCTURAL BASIS; ORIGIN; COMPLEX; PROCESSIVITY; ARCHITECTURE;
D O I
10.1073/pnas.1700530114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The replisome unwinds and synthesizes DNA for genome duplication. In eukaryotes, the Cdc45-MCM-GINS (CMG) helicase and the leading-strand polymerase, Pol epsilon, form a stable assembly. The mechanism for coupling DNA unwinding with synthesis is starting to be elucidated, however the architecture and dynamics of the replication fork remain only partially understood, preventing a molecular understanding of chromosome replication. To address this issue, we conducted a systematic single-particle EM study on multiple permutations of the reconstituted CMG-Pol epsilon assembly. Pol epsilon contains two flexibly tethered lobes. The noncatalytic lobe is anchored to the motor of the helicase, whereas the polymerization domain extends toward the side of the helicase. We observe two alternate configurations of the DNA synthesis domain in the CMG-bound Pol epsilon. We propose that this conformational switch might control DNA template engagement and release, modulating replisome progression.
引用
收藏
页码:4141 / 4146
页数:6
相关论文
共 53 条
[1]   Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate [J].
Ali, Ferdos Abid ;
Renault, Ludovic ;
Gannon, Julian ;
Gahlon, Hailey L. ;
Kotecha, Abhay ;
Zhou, Jin Chuan ;
Rueda, David ;
Costa, Alessandro .
NATURE COMMUNICATIONS, 2016, 7
[2]   DPB2, THE GENE ENCODING DNA POLYMERASE-II SUBUNIT-B, IS REQUIRED FOR CHROMOSOME-REPLICATION IN SACCHAROMYCES-CEREVISIAE [J].
ARAKI, H ;
HAMATAKE, RK ;
JOHNSTON, LH ;
SUGINO, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (11) :4601-4605
[3]   Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy [J].
Asturias, FJ ;
Cheung, IK ;
Sabouri, N ;
Chilkova, O ;
Wepplo, D ;
Johansson, E .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (01) :35-43
[4]   Archaeal MCM has separable processivity, substrate choice and helicase domains [J].
Barry, Elizabeth R. ;
McGeoch, Adam T. ;
Kelman, Zvi ;
Bell, Stephen D. .
NUCLEIC ACIDS RESEARCH, 2007, 35 (03) :988-998
[5]   Who Is Leading the Replication Fork, Pol ε or Pol δ? [J].
Burgers, Peter M. J. ;
Gordenin, Dmitry ;
Kunkel, Thomas A. .
MOLECULAR CELL, 2016, 61 (04) :492-493
[6]   The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA [J].
Chilkova, Olga ;
Stenlund, Peter ;
Isoz, Isabelle ;
Stith, Carrie M. ;
Grabowski, Pawel ;
Lundstroem, Else-Britt ;
Burgers, Peter M. ;
Johansson, Erik .
NUCLEIC ACIDS RESEARCH, 2007, 35 (19) :6588-6597
[7]   Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation [J].
Clausen, Anders R. ;
Lujan, Scott A. ;
Burkholder, Adam B. ;
Orebaugh, Clinton D. ;
Williams, Jessica S. ;
Clausen, Maryam F. ;
Malc, Ewa P. ;
Mieczkowski, Piotr A. ;
Fargo, David C. ;
Smith, Duncan J. ;
Kunkel, Thomas A. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2015, 22 (03) :185-191
[8]   The structural basis for MCM2-7 helicase activation by GINS and Cdc45 [J].
Costa, Alessandro ;
Ilves, Ivar ;
Tamberg, Nele ;
Petojevic, Tatjana ;
Nogales, Eva ;
Botchan, Michael R. ;
Berger, James M. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2011, 18 (04) :471-U110
[9]   Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain [J].
Dua, R ;
Levy, DL ;
Campbell, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22283-22288
[10]   Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control [J].
Feng, WY ;
D'Urso, G .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (14) :4495-4504