On the character of operational solutions of the time-fractional diffusion equation

被引:6
作者
Takaci, Djurdjica [1 ]
Takaci, Arpad [1 ]
Strboja, Mirjana [1 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Math & Informat, Novi Sad 21000, Serbia
关键词
Fractional calculus; Operational calculus; Diffusion equation; Mikusinski operators; APPROXIMATE SOLUTION; MATHEMATICAL-MODEL; VISCOELASTIC BAR;
D O I
10.1016/j.na.2009.10.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonhomogeneous time-fractional diffusion equation is analyzed in the frames of the Mikusinski calculus. The exact and the approximate Solution of the considered problem are constructed and their character is analyzed. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2367 / 2374
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[3]   The Wright functions as solutions of the time-fractional diffusion equation [J].
Mainardi, F ;
Pagnini, G .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (01) :51-62
[4]  
Mainardi F., 2001, Fract. Calc. Appl. Anal, V4, P153, DOI DOI 10.1007/BF02935797
[5]  
MIKUSINSKI J, 1983, OPERATIONAL CALCULUS, V1
[6]  
MIKUSIRISKI J, 1987, OPERATIONAL CALCULUS, V2
[7]  
Ross B, 1975, LECT NOTES MATH, P1, DOI DOI 10.1007/BFB0067096
[8]  
Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications
[9]  
Stankovic B., 1970, Publ. de l'Institut Math'ematique, Beograd, Nouvelle S'er., V10, P113
[10]  
TAKACI A, 1978, MAT VESNIK BELGRADE, V2, P31