A multi-pattern deep fusion model for short-term bus passenger flow forecasting

被引:80
作者
Bai, Yun [1 ]
Sun, Zhenzhong [1 ]
Zeng, Bo [1 ]
Deng, Jun [1 ]
Li, Chuan [1 ]
机构
[1] Dongguan Univ Technol, Sch Mech Engn, Dongguan 523808, Peoples R China
关键词
Multi-pattern deep fusion; Forecast; Short-term bus passenger flow; Affinity propagation; Deep belief network; SUPPORT VECTOR REGRESSION; AFFINITY PROPAGATION; HYBRID APPROACH; PREDICTION; DECOMPOSITION; NETWORK; DEMAND; MACHINE;
D O I
10.1016/j.asoc.2017.05.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Short-term passenger flow forecasting is one of the crucial components in transportation systems with data support for transportation planning and management. For forecasting bus passenger flow, this paper proposes a multi-pattern deep fusion (MPDF) approach that is constructed by fusing deep belief networks (DBNs) corresponding to multiple patterns. The dataset of the short-term bus passenger flow is first segmented into different clusters by an affinity propagation algorithm. The passenger flow distribution of these clusters is subsequently analyzed for identifying different patterns. In each pattern, a DBN is developed as a deep representation for the passenger flow. The outputs of the DBNs are finally fused by chronological order rearrangement. Taking a bus line in Guangzhou city of China as an example, the present MPDF approach is modeled. Five approaches, non-parametric and parametric models, are applied to the same case for comparison. The results show that, the proposed model overwhelms all the peer methods in terms of mean absolute percentage error, root-mean-square error, and determination coefficient criteria. In addition, there exists significant difference between the addressed model and the comparison models. It is recommended from the present study that the deep learning technique incorporating the pattern analysis is promising in forecasting the short-term passenger flow. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:669 / 680
页数:12
相关论文
共 50 条
  • [31] A Hybrid Short-Term Forecasting Model of Passenger Flow on High-Speed Rail considering the Impact of Train Service Frequency
    Lai, Qingying
    Liu, Jun
    Luo, Yongji
    Ma, Minshu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [32] Dynamic Bayesian Networks with Gaussian Mixture Models for Short-Term Passenger Flow Forecasting
    Roos, JereMy
    Bonnevay, Stephane
    Gavin, Gerald
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [33] Short-Term Urban Rail Passenger Flow Forecasting: A Dynamic Bayesian Network Approach
    Roos, Jeremy
    Bonnevay, Stephane
    Gavin, Gerald
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 1034 - 1039
  • [34] Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
    Wei, Yu
    Chen, Mu-Chen
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2012, 21 (01) : 148 - 162
  • [35] A Short-Term Wind Speed Forecasting Model Based on a Multi-Variable Long Short-Term Memory Network
    Xie, Anqi
    Yang, Hao
    Chen, Jing
    Sheng, Li
    Zhang, Qian
    ATMOSPHERE, 2021, 12 (05)
  • [36] Deep Temporal Convolutional Networks for Short-Term Traffic Flow Forecasting
    Zhao, Wentian
    Gao, Yanyun
    Ji, Tingxiang
    Wan, Xili
    Ye, Feng
    Bai, Guangwei
    IEEE ACCESS, 2019, 7 : 114496 - 114507
  • [37] Short-Term Traffic Flow Forecasting Model Based on GA-TCN
    Zhang, Rongji
    Sun, Feng
    Song, Ziwen
    Wang, Xiaolin
    Du, Yingcui
    Dong, Shulong
    JOURNAL OF ADVANCED TRANSPORTATION, 2021, 2021
  • [38] A New Hybrid Model for Short-Term Electricity Load Forecasting
    Haq, Md Rashedul
    Ni, Zhen
    IEEE ACCESS, 2019, 7 : 125413 - 125423
  • [39] Two-phase deep learning model for short-term wind direction forecasting
    Tang, Zhenhao
    Zhao, Gengnan
    Ouyang, Tinghui
    RENEWABLE ENERGY, 2021, 173 : 1005 - 1016
  • [40] Deep learning time pattern attention mechanism-based short-term load forecasting method
    Liao, Wei
    Ruan, Jiaqi
    Xie, Yinghua
    Wang, Qingwei
    Li, Jing
    Wang, Ruoyu
    Zhao, Junhua
    FRONTIERS IN ENERGY RESEARCH, 2023, 11