A Thermo-Mechanical Fatigue Damage Modeling Methodology for Power Semiconductor Robustness Validation Studies

被引:0
|
作者
Springer, Martin [1 ]
Pettermann, Heinz E. [1 ]
机构
[1] Vienna Univ Technol, Inst Lightweight Design & Struct Biomech, Vienna, Austria
关键词
DELAMINATION; SIMULATION;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
A numerical approach to model fatigue damage propagation in metal-on-silicon structures under transient thermal loading is presented. The considered fatigue failure mechanisms are fatigue crack growth inside the thick metallization and potential cyclic delamination growth at the interface between the metallization and the silicon. Advanced methods within the framework of the Finite Element Method are developed to study these failure mechanisms and to assess the material and interface degradation on a generic metal-onsilicon geometry. Such methodology can be applied to explore fatigue-determined robustness limits of power semiconductor devices exposed to severe temperature swings, e.g. during cyclic electric overload switching.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The Damage Operator Approach: Fatigue, Creep and Viscoplasticity Modeling in Thermo-Mechanical Fatigue
    Nagode, Marko
    Hack, Michael
    SAE INTERNATIONAL JOURNAL OF MATERIALS AND MANUFACTURING, 2011, 4 (01) : 632 - 637
  • [2] Damage criterions in thermo-mechanical fatigue models
    Delprete, Cristiana
    Rosso, Carlo
    Sesana, Raffaella
    PROCEEDINGS OF THE 8TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, VOL 4, 2006, : 105 - 114
  • [3] Thermo-mechanical Fatigue of Power Plant Components
    Okrajni, Jerzy
    CREEP & FRACTURE IN HIGH TEMPERATURE COMPONENTS: DESIGN & LIFE ASSESSMENT ISSUES, PROCEEDINGS, 2009, : 528 - 536
  • [4] Phasing effects on thermo-mechanical fatigue damage investigated via crystal plasticity modeling
    Mackey, Brandon T.
    Sangid, Michael D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 903
  • [5] Thermo-Mechanical Modeling and Experimental Validation of an Uncooled Microbolometer
    Kaynak, C. Baristiran
    Goeritz, A.
    Durmaz, E. C.
    Wietstruck, M.
    Onat, E.
    Ozcan, A. S.
    Turkoglu, E. R.
    Gurbuz, Y.
    Kaynak, M.
    2020 IEEE 20TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), 2020, : 57 - 59
  • [6] High cycle thermo-mechanical fatigue: Damage operator approach
    Nagode, M.
    Hack, M.
    Fajdiga, M.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2009, 32 (06) : 505 - 514
  • [7] Low cycle thermo-mechanical fatigue: damage operator approach
    Nagode, M.
    Hack, M.
    Fajdiga, M.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2010, 33 (03) : 149 - 160
  • [8] Modeling methodology for predicting the thermo-mechanical reliability of electronic packaging
    Thurston, M
    Raiser, G
    Chiang, D
    Tandon, S
    Mello, M
    52ND ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, 2002 PROCEEDINGS, 2002, : 1281 - 1290
  • [9] CHARACTERIZATION AND MODELING OF THERMO-MECHANICAL FATIGUE IN EQUIATOMIC NITI ACTUATORS
    Wheeler, Robert W.
    Hartl, Darren J.
    Chemisky, Yves
    Lagoudas, Dimitris C.
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2014, VOL 2, 2014,
  • [10] Thermo-mechanical modeling and experimental validation for multilayered metallic microstructures
    Zhongjing Ren
    Jianping Yuan
    Xiaoyu Su
    Sundeep Mangla
    Chang-Yong Nam
    Ming Lu
    Fernando Camino
    Yong Shi
    Microsystem Technologies, 2021, 27 : 2579 - 2587