Quasi-stationary optical solitons with parabolic law nonlinearity

被引:31
作者
Biswas, A [1 ]
机构
[1] Tennessee State Univ, Ctr Excellence ISEM, Dept Math & Phys, Nashville, TN 37209 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0030-4018(02)02309-X
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The multiple-scale perturbation analysis is used to study the perturbed nonlinear Schrodinger's equation, due to parabolic law nonlinearity, that governs the propagation of solitons through an optical fiber. We have considered the perturbations due to the nonlinear damping and saturable amplifiers. A new definition of the phase of the soliton is introduced that captures the corrections to the pulse where the standard soliton perturbation theory fails. The numerical results support the analysis. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:427 / 437
页数:11
相关论文
共 20 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[2]   Breathing spatial solitons in non-Kerr media [J].
Afanasjev, VV ;
Chu, PL ;
Kivshar, YS .
OPTICS LETTERS, 1997, 22 (18) :1388-1390
[3]  
Agrawal G, 1989, Nonlinear Fiber Optics
[4]   Hamiltonian-versus-energy diagrams in soliton theory [J].
Akhmediev, N ;
Ankiewicz, A ;
Grimshaw, R .
PHYSICAL REVIEW E, 1999, 59 (05) :6088-6096
[5]  
Akhmediev N., 1997, SOLITONS NONLINEAR P
[6]   Spatial solitons in Kerr and Kerr-like media [J].
Akhmediev, NN .
OPTICAL AND QUANTUM ELECTRONICS, 1998, 30 (7-10) :535-569
[7]   Asymmetrical splitting of higher-order optical solitons induced by quintic nonlinearity [J].
Artigas, D ;
Torner, L ;
Torres, JP ;
Akhmediev, NN .
OPTICS COMMUNICATIONS, 1997, 143 (4-6) :322-328
[8]   Perturbation of solitons due to power law nonlinearity [J].
Biswas, A .
CHAOS SOLITONS & FRACTALS, 2001, 12 (03) :579-588
[9]  
Biswas A, 2001, J MOD OPTIC, V48, P1135, DOI 10.1080/09500340010022275
[10]   SOLITON PROPAGATION AND SOLITON COLLISION IN DOUBLE-DOPED FIBERS WITH A NON-KERR-LIKE NONLINEAR REFRACTIVE-INDEX CHANGE [J].
GATZ, S ;
HERRMANN, J .
OPTICS LETTERS, 1992, 17 (07) :484-486