Normalized solutions of mass supercritical Schrodinger equations with potential

被引:83
作者
Bartsch, Thomas [1 ]
Molle, Riccardo [2 ]
Rizzi, Matteo [1 ]
Verzini, Gianmaria [3 ]
机构
[1] Justus Liebig Univ Giessen, Math Inst, Arndtstr 2, D-35392 Giessen, Germany
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Rome, Italy
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci, Milan, Italy
关键词
Nonlinear Schrodinger equations; mln-max methods; normalized solution; POSITIVE SOLUTIONS;
D O I
10.1080/03605302.2021.1893747
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of normalized solutions of the nonlinear Schrodinger equation -Delta u + V(x)u + lambda u = vertical bar u vertical bar(p-2)u in R-N in the mass supercritical and Sobolev subcritical case 2 + 4/N < p < 2*. We prove the existence of a solution (u, lambda) is an element of H-1 (R-N) x R+ with prescribed L-2-norm parallel to u parallel to(2) = rho under various conditions on the potential V : R-N -> R, positive and vanishing at infinity, including potentials with singularities. The proof is based on a new min-max argument.
引用
收藏
页码:1729 / 1756
页数:28
相关论文
共 32 条
[31]   Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case [J].
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (06)
[32]  
Talenti G., 1976, ANN MATEMATICA, V110, DOI 10.1007/BF02418013