Normalized solutions of mass supercritical Schrodinger equations with potential

被引:83
作者
Bartsch, Thomas [1 ]
Molle, Riccardo [2 ]
Rizzi, Matteo [1 ]
Verzini, Gianmaria [3 ]
机构
[1] Justus Liebig Univ Giessen, Math Inst, Arndtstr 2, D-35392 Giessen, Germany
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Rome, Italy
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci, Milan, Italy
关键词
Nonlinear Schrodinger equations; mln-max methods; normalized solution; POSITIVE SOLUTIONS;
D O I
10.1080/03605302.2021.1893747
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of normalized solutions of the nonlinear Schrodinger equation -Delta u + V(x)u + lambda u = vertical bar u vertical bar(p-2)u in R-N in the mass supercritical and Sobolev subcritical case 2 + 4/N < p < 2*. We prove the existence of a solution (u, lambda) is an element of H-1 (R-N) x R+ with prescribed L-2-norm parallel to u parallel to(2) = rho under various conditions on the potential V : R-N -> R, positive and vanishing at infinity, including potentials with singularities. The proof is based on a new min-max argument.
引用
收藏
页码:1729 / 1756
页数:28
相关论文
共 32 条
[1]  
Alves, 2021, DISCR CONTINUOUS DYN
[2]  
Ambrosetti A, 2011, PROG NONLINEAR DIFFE, V82, P1, DOI 10.1007/978-0-8176-8114-2
[3]  
Aubin T., 1976, THE J, V11, DOI 10.4310/jdg/1214433725
[4]  
BARTSCH T, 2017, J FUNCT ANAL, V272
[5]  
BARTSCH T, 2005, ANN I H POINCARE-AN, V22
[6]   Normalized solutions for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Zhong, Xuexiu ;
Zou, Wenming .
MATHEMATISCHE ANNALEN, 2021, 380 (3-4) :1713-1740
[7]   Multiple normalized solutions for a competing system of Schrodinger equations [J].
Bartsch, Thomas ;
Soave, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[8]   Normalized solutions for nonlinear Schrodinger systems [J].
Bartsch, Thomas ;
Jeanjean, Louis .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) :225-242
[9]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[10]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83