Modeling soil organic carbon in corn (Zea mays L.)-based systems in Ohio under climate change

被引:7
作者
Maas, E. D. V. L. [1 ]
Lal, R. [1 ]
Coleman, K. [2 ]
Montenegro, A. [3 ]
Dick, W. A. [4 ]
机构
[1] Ohio State Univ, Carbon Management & Sequestrat Ctr, Sch Environm & Nat Resources, Columbus, OH 43210 USA
[2] Rothamsted Res, Harpenden, Herts, England
[3] Ohio State Univ, Dept Geog, Columbus, OH 43210 USA
[4] Ohio State Univ, Sch Environm & Nat Resources, Columbus, OH 43210 USA
基金
美国食品与农业研究所;
关键词
agriculture; carbon sequestration; climate change; modeling; Ohio; soil organic carbonglobal; GLOBAL CLIMATE; ELEVATED CO2; MATTER DECOMPOSITION; NO-TILLAGE; NITROGEN; SEQUESTRATION; AGRICULTURE; TEMPERATURE; MITIGATE; IMPACTS;
D O I
10.2489/jswc.72.3.191
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Soil organic carbon (SOC) is a key indicator of soil quality. Knowledge of the effects of land management and climate change on SOC stocks is of vital importance in creating future sustainable land use systems. This study presents both the promise and current challenges of modeling SOC in mineral soils under climate change. Soils data from two longterm agricultural research sites in Ohio under no-till (NT) and plow-till (PT) management, the RothC soil C model, and climate data from the Canadian Regional Climate Model were used to project future SOC content in agricultural soils using low-emissions (LE) and high-emissions (HE) climate change scenarios. It was hypothesized that from 2015 to 2070, SOC levels in soils under NT management in Ohio will show increasing trends under the LE scenario, decreasing trends in NT under the HE scenario, and decreasing trends in PT under both scenarios, with lower levels of SOC for both treatments under the HE scenario. The results of this study projected total SOC content in the topsoil layers (0 to 25 cm [0 to 10 in] at Wooster and 0 to 23 cm [0 to 9 in] at Hoytville) to decrease at all sites and under all management and climate projections, with the exception of NT at Wooster and Hoytville and PT at Wooster under the LE scenario. Starting at 32.4 Mg C ha(-1) (14.5 tn C ac(-1)) in 1962 at Wooster, by 2070, soil under NT management is projected to have 45.4 and 32.1 Mg C ha(-1) (20.3 and 14.3 tn C ac(-1)) for LE and HE scenarios, respectively, while PT management starting at 31.5 Mg C ha(-1) (14.1 tn C ac(-1)) would have 29.4 and 21 Mg C ha(-1) (13.1 and 9.4 tn C ac(-1)) for LE and HE scenarios, respectively. Starting at 65.2 Mg C ha(-1) (29.1 tn C ac(-1)) in 1963 at Hoytville, by 2070, soil under NT management would have 65.9 and 51 Mg C ha(-1) (29.4 and 22.8 tn C ac(-1)) for LE and HE scenarios, respectively, and PT starting at 63.5 Mg C ha(-1) (28.3 tn C ac(-1)) would have 36.9 and 28.7 Mg C ha(-1) (16.5 and 12.8 tn C ac(-1)) for LE and HE scenarios, respectively.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 88 条
[1]   Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north-west India [J].
Abebe, A. ;
Pathak, H. ;
Singh, S. D. ;
Bhatia, A. ;
Harit, R. C. ;
Kumar, Vinod .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2016, 218 :66-72
[2]   Full-inversion tillage and organic carbon distribution in soil profiles: A meta-analysis [J].
Angers, D. A. ;
Eriksen-Hamel, N. S. .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2008, 72 (05) :1370-1374
[3]  
[Anonymous], 2016, A2 EM SC
[4]  
[Anonymous], 2008, The Effects of Climate Change on Forest Resources
[5]   How is CO2 affecting yields and technological progress? A statistical analysis [J].
Attavanich, Witsanu ;
McCarl, Bruce A. .
CLIMATIC CHANGE, 2014, 124 (04) :747-762
[6]   Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States [J].
Basche, Andrea D. ;
Archontoulis, Sotirios V. ;
Kaspar, Thomas C. ;
Jaynes, Dan B. ;
Parkin, Timothy B. ;
Miguez, Fernando E. .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2016, 218 :95-106
[7]   No-tillage and soil-profile carbon sequestration: An on-farm assessment [J].
Blanco-Canqui, Humberto ;
Lal, R. .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2008, 72 (03) :693-701
[8]  
Bukovsky M., 2011, Masks for the Bukovsky regionalization of North America
[9]   Altered soil microbial community at elevated CO2 leads to loss of soil carbon [J].
Carney, Karen M. ;
Hungate, Bruce A. ;
Drake, Bert G. ;
Megonigal, J. Patrick .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (12) :4990-4995
[10]   Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2 [J].
Cheng, Lei ;
Booker, Fitzgerald L. ;
Tu, Cong ;
Burkey, Kent O. ;
Zhou, Lishi ;
Shew, H. David ;
Rufty, Thomas W. ;
Hu, Shuijin .
SCIENCE, 2012, 337 (6098) :1084-1087