Relative perturbation theory for hyperbolic singular value problem

被引:4
作者
Slapnicar, I
Truhar, N
机构
[1] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split 21000, Croatia
[2] Univ Josip Juraj Strossmayer, Fac Civil Engn, Osijek 31000, Croatia
[3] Fernuniv, Lehrgebiet Math Phys, D-5800 Hagen, Germany
关键词
hyperbolic singular value problems; perturbation theory;
D O I
10.1016/S0024-3795(02)00464-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give relative perturbation bounds for singular values and perturbation bounds for singular subspaces of a hyperbolic singular value problem for the pair (G, J), where G is a full rank matrix and J is a diagonal matrix of signs. We consider two types of relative perturbations: G + deltaG = (B + deltaB)D and G + deltaG = (D) over bar((B) over bar + delta(B) over bar), depending whether G has full column or full row rank, respectively. In both cases we also consider relative element-wise perturbations of G which typically occur in numerical computations. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:367 / 386
页数:20
相关论文
共 20 条
[1]   COMPUTING ACCURATE EIGENSYSTEMS OF SCALED DIAGONALLY DOMINANT MATRICES [J].
BARLOW, J ;
DEMMEL, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :762-791
[2]   ROTATION OF EIGENVECTORS BY A PERTURBATION .3. [J].
DAVIS, C ;
KAHAN, WM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :1-&
[3]   JACOBIS METHOD IS MORE ACCURATE THAN QR [J].
DEMMEL, J ;
VESELIC, K .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (04) :1204-1245
[4]   Three absolute perturbation bounds for matrix eigenvalues imply relative bounds [J].
Eisenstat, SC ;
Ipsen, ICF .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (01) :149-158
[5]   Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices [J].
Eisenstat, SC ;
Ipsen, ICF .
BIT, 1998, 38 (03) :502-509
[6]   SINGULAR-VALUES, DOUBLY STOCHASTIC MATRICES, AND APPLICATIONS [J].
ELSNER, L ;
FRIEDLAND, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 220 :161-169
[7]   Absolute and relative perturbation bounds for invariant subspaces of matrices [J].
Ipsen, ICF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 309 (1-3) :45-56
[8]   Relative perturbation theory: I. Eigenvalue and singular value variations [J].
Li, RC .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (04) :956-982
[9]   Relative perturbation theory: II. Eigenspace and singular subspace variations [J].
Li, RC .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :471-492
[10]  
ONN R, 1991, IEEE T ACOUSTICS SPE, P1575