Fe azaphthalocyanine unimolecular layers (Fe AzULs) on carbon nanotubes for realizing highly active oxygen reduction reaction (ORR) catalytic electrodes

被引:32
|
作者
Abe, Hiroya [1 ,2 ]
Hirai, Yutaro [3 ]
Ikeda, Susumu [1 ]
Matsuo, Yasutaka [4 ]
Matsuyama, Haruyuki [5 ]
Nakamura, Jun [5 ]
Matsue, Tomokazu [6 ]
Yabu, Hiroshi [1 ]
机构
[1] Tohoku Univ, WPI Adv Inst Mat Res, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan
[3] Tohoku Univ, Grad Sch Engn, Aoba Ku, 6-6 Aramaki Aza Aoba, Sendai, Miyagi 9808579, Japan
[4] Hokkaido Univ, Res Inst Elect Sci, Kita Ku, Kita21,Nishil0, Sapporo, Hokkaido 0010021, Japan
[5] Univ ElectroCommun UEC Tokyo, Dept Engn Sci, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[6] Tohoku Univ, Grad Sch Environm Studies, Aoba Ku, 6-6-11-604 Aramaki Aza Aoba, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
IRON PHTHALOCYANINE; GRAPHENE; NITROGEN; ENERGY; SITES; NANOCRYSTALS; PORPHYRIN; EFFICIENT;
D O I
10.1038/s41427-019-0154-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new class of Pt-free catalysts was designed that included molecular iron phthalocyanine (FePc) derivatives, namely, iron azaphthalocyanine (FeAzPc) unimolecular layers (Fe AzULs) adsorbed on oxidized multiwall carbon nanotubes (oxMWCNTs). FeAzPcs were dissolved in organic solvents such as dimethyl sulfoxide (DMSO), and catalytic electrodes modified with molecularly adsorbed FeAzPcs were successfully prepared. The optimized composition of the catalytic electrodes was determined, and the electrodes exhibited superior activity for the oxygen reduction reaction (ORR) and better durability than conventional FePc catalytic electrodes and commercial Pt/C due to the electron-withdrawing properties of the pyridinic nitrogen in FeAzPcs. The catalytic electrodes that were molecularly modified with FeAzPcs have higher activities than those composed of FeAzPc crystals and oxMWCNTs. To the best of our knowledge, among all of the conventional catalysts based on modified MWCNTs and oxMWCNTs, this catalyst exhibits the highest activity. Unlike other Pt-free catalytic electrodes, the Fe AzUL catalytic electrodes can be prepared by low-cost processing without pyrolysis and are therefore promising catalytic electrode materials for applications, such as polymer electrolyte fuel cells and metal-air batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fe azaphthalocyanine unimolecular layers (Fe AzULs) on carbon nanotubes for realizing highly active oxygen reduction reaction (ORR) catalytic electrodes
    Hiroya Abe
    Yutaro Hirai
    Susumu Ikeda
    Yasutaka Matsuo
    Haruyuki Matsuyama
    Jun Nakamura
    Tomokazu Matsue
    Hiroshi Yabu
    NPG Asia Materials, 2019, 11
  • [2] Highly electroactive N–Fe hydrothermal carbons and carbon nanotubes for the oxygen reduction reaction
    R.G.Morais
    N.Rey-Raap
    J.L.Figueiredo
    M.F.R.Pereira
    Journal of Energy Chemistry, 2020, 50 (11) : 260 - 270
  • [3] Highly electroactive N-Fe hydrothermal carbons and carbon nanotubes for the oxygen reduction reaction
    Morais, R. G.
    Rey-Raap, N.
    Figueiredo, J. L.
    Pereira, M. F. R.
    JOURNAL OF ENERGY CHEMISTRY, 2020, 50 : 260 - 270
  • [4] Fe/Fe3C Nanoparticles Confined in Graphitic Layers/Carbon Nanotubes as Efficient Oxygen Reduction Reaction Catalysts
    Huang, Yanping
    Liu, Weifang
    Kan, Shuting
    Liu, Penggao
    Liu, Hongtao
    Liu, Kaiyu
    CHEMISTRYSELECT, 2019, 4 (36): : 10863 - 10867
  • [5] Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction
    Hu, Tian-Hang
    Yin, Zhong-Shu
    Guo, Jian-Wei
    Wang, Cheng
    JOURNAL OF POWER SOURCES, 2014, 272 : 661 - 671
  • [6] Heating Treated Carbon Nanotubes As Highly Active Electrocatalysts for Oxygen Reduction Reaction
    Liu, Mengjia
    Li, Jinghong
    ELECTROCHIMICA ACTA, 2015, 154 : 177 - 183
  • [7] Carbon-supported Pd-Fe electrocatalysts for oxygen reduction reaction (ORR) and their methanol tolerance
    Neergat, M.
    Gunasekar, V.
    Rahul, R.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 658 (1-2) : 25 - 32
  • [8] Fe/Fe-Nx-based carbon nanotubes with isolated active sites by ionic-state mediated synthesizing for highly efficient ORR
    Lu, Qidi
    Zhao, Zhenlu
    JOURNAL OF POWER SOURCES, 2025, 626
  • [9] Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction
    Yezhou Hu
    Yun Lu
    Xueru Zhao
    Tao Shen
    Tonghui Zhao
    Mingxing Gong
    Ke Chen
    Chenglong Lai
    Jian Zhang
    Huolin L. Xin
    Deli Wang
    Nano Research, 2020, 13 : 2365 - 2370
  • [10] Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction
    Zhang, Diyang
    Chen, Wenxing
    Li, Zhi
    Chen, Yuanjun
    Zheng, Lirong
    Gong, Yue
    Li, Qiheng
    Shen, Rongan
    Han, Yunhu
    Cheong, Weng-Chon
    Gu, Lin
    Li, Yadong
    CHEMICAL COMMUNICATIONS, 2018, 54 (34) : 4274 - 4277