NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells

被引:92
作者
Jan, Yu Jen [1 ,2 ,3 ]
Chen, Jie-Fu [1 ,2 ]
Zhu, Yazhen [3 ]
Lu, Yi-Tsung [4 ]
Chen, Szu Hao [3 ]
Chung, Howard [3 ]
Smalley, Matthew [3 ,5 ]
Huang, Yen-Wen [3 ,5 ]
Dong, Jiantong [3 ]
Chen, Li-Ching [11 ]
Yu, Hsiao-Hua [6 ]
Tomlinson, James S. [7 ,9 ,10 ]
Hou, Shuang [7 ]
Agopian, Vatche G. [7 ,8 ]
Posadas, Edwin M. [1 ,2 ]
Tseng, Hsian-Rong [3 ]
机构
[1] Cedars Sinai Med Ctr, Samuel Oschin Comprehens Canc Inst, Urol Oncol Program, Los Angeles, CA 90048 USA
[2] Cedars Sinai Med Ctr, Samuel Oschin Comprehens Canc Inst, Urooncol Res Labs, Los Angeles, CA 90048 USA
[3] Univ Calif Los Angeles, Crump Inst Mol Imaging, Calif NanoSyst Inst, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA
[4] Univ Southern Calif, Keck Sch Med, Norris Comprehens Canc Ctr, Los Angeles, CA 90033 USA
[5] CytoLumina Technol Corp, Los Angeles, CA USA
[6] Acad Sinica, Inst Chem, Taipei, Taiwan
[7] Univ Calif Los Angeles, Dept Surg, Los Angeles, CA 90024 USA
[8] Univ Calif Los Angeles, Liver Transplantat & Hepatobiliary Surg, Los Angeles, CA USA
[9] Univ Calif Los Angeles, Ctr Pancreat Dis, Los Angeles, CA USA
[10] Greater Los Angeles Vet Affairs Adm, Dept Surg, Los Angeles, CA USA
[11] Cathay Gen Hosp, Dept Obstet & Gynecol, Taipei, Taiwan
基金
美国国家卫生研究院;
关键词
Circulating tumor cells; NanoVelcro Chips; Nanostructured substrates; Microfluidics; Cell sorting; Molecular characterization; METASTATIC BREAST-CANCER; EFFICIENT CAPTURE; PANCREATIC-CANCER; PERIPHERAL-BLOOD; PROSTATE-CANCER; INTRATUMOR HETEROGENEITY; EMBEDDED MICROCHIPS; MUTATIONAL ANALYSIS; DRUG-DELIVERY; LABEL-FREE;
D O I
10.1016/j.addr.2018.03.006
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Circulating tumor cells (CTCs) are cancer cells shredded from either a primary tumor or a metastatic site and circulate in the blood as the potential cellular origin of metastasis. By detecting and analyzing CTCs, we will be able to noninvasively monitor disease progression in individual cancer patients and obtain insightful information for assessing disease status, thus realizing the concept of "tumor liquid biopsy". However, it is technically challenging to identify CTCs in patient blood samples because of the extremely low abundance of CTCs among a large number of hematologic cells. In order to address this challenge, our research team at UCLA pioneered a unique concept of "NanoVelcro" cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with remarkable efficiency. Four generations of NanoVelcro CTC assays have been developed over the past decade for a variety of clinical utilities. The 1st-gen NanoVelcro Chips, composed of a silicon nano wire substrate (SiNS) and an overlaid microfluidic chaotic mixer, were created for CTC enumeration. The 2nd-gen NanoVelcro Chips (i.e., NanoVelcro-LMD), based on polymer nanosubstrates, were developed for single-CTC isolation in conjunction with the use of the laser microdissection (LMD) technique. By grafting thermoresponsive polymer brushes onto SiNS, the 3rd-gen Thermoresponsive NanoVelcro Chips have demonstrated the capture and release of CTCs at 37 and 4 degrees C respectively, thereby allowing for rapid CTC purification while maintaining cell viability and molecular integrity. Fabricated with boronic acid-grafted conducting polymer-based nanomaterial on chip surface, the 4th-gen NanoVelcro Chips (Sweet chip) were able to purify CTCs with well-preserved RNA transcripts, which could be used for downstream analysis of several cancer specific RNA biomarkers. In this review article, we will summarize the development of the four generations of NanoVelcro CTC assays, and the clinical applications of each generation of devices. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 93
页数:16
相关论文
共 121 条
[1]   Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis [J].
Aceto, Nicola ;
Bardia, Aditya ;
Miyamoto, David T. ;
Donaldson, Maria C. ;
Wittner, Ben S. ;
Spencer, Joel A. ;
Yu, Min ;
Pely, Adam ;
Engstrom, Amanda ;
Zhu, Huili ;
Brannigan, Brian W. ;
Kapur, Ravi ;
Stott, Shannon L. ;
Shioda, Toshi ;
Ramaswamy, Sridhar ;
Ting, David T. ;
Lin, Charles P. ;
Toner, Mehmet ;
Haber, Daniel A. ;
Maheswaran, Shyamala .
CELL, 2014, 158 (05) :1110-1122
[2]   Circulating Tumor Cells: Liquid Biopsy of Cancer [J].
Alix-Panabieres, Catherine ;
Pantel, Klaus .
CLINICAL CHEMISTRY, 2013, 59 (01) :110-118
[3]   Detection and quantification of circulating tumor cells in mouse models of human breast cancer using immunomagnetic enrichment and multiparameter flow cytometry [J].
Allan, AL ;
Vantyghem, SA ;
Tuck, AB ;
Chambers, AF ;
Chin-Yee, IH ;
Keeney, M .
CYTOMETRY PART A, 2005, 65A (01) :4-14
[4]   Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer [J].
Ankeny, J. S. ;
Court, C. M. ;
Hou, S. ;
Li, Q. ;
Song, M. ;
Wu, D. ;
Chen, J. F. ;
Lee, T. ;
Lin, M. ;
Sho, S. ;
Rochefort, M. M. ;
Girgis, M. D. ;
Yao, J. ;
Wainberg, Z. A. ;
Muthusamy, V. R. ;
Watson, R. R. ;
Donahue, T. R. ;
Hines, O. J. ;
Reber, H. A. ;
Graeber, T. G. ;
Tseng, H. R. ;
Tomlinson, J. S. .
BRITISH JOURNAL OF CANCER, 2016, 114 (12) :1367-1375
[5]   AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer [J].
Antonarakis, Emmanuel S. ;
Lu, Changxue ;
Wang, Hao ;
Luber, Brandon ;
Nakazawa, Mary ;
Roeser, Jeffrey C. ;
Chen, Yan ;
Mohammad, Tabrez A. ;
Chen, Yidong ;
Fedor, Helen L. ;
Lotan, Tamara L. ;
Zheng, Qizhi ;
De Marzo, Angelo M. ;
Isaacs, John T. ;
Isaacs, William B. ;
Nadal, Rosa ;
Paller, Channing J. ;
Denmeade, Samuel R. ;
Carducci, Michael A. ;
Eisenberger, Mario A. ;
Luo, Jun .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 371 (11) :1028-1038
[6]   Thermoresponsive release of viable microfiltrated Circulating Tumor Cells (CTCs) for precision medicine applications [J].
Ao, Zheng ;
Parasido, Erika ;
Rawal, Siddarth ;
Williams, Anthony ;
Schlegel, Richard ;
Liu, Stephen ;
Albanese, Chris ;
Cote, Richard J. ;
Agarwal, Ashutosh ;
Datar, Ram H. .
LAB ON A CHIP, 2015, 15 (22) :4277-4282
[7]   Enhancing Surface Interactions with Colon Cancer Cells on a Transferrin-Conjugated 3D Nanostructured Substrate [J].
Banerjee, Shashwat S. ;
Paul, Debjani ;
Bhansali, Sujit G. ;
Aher, Naval D. ;
Jalota-Badhwar, Archana ;
Khandare, Jayant .
SMALL, 2012, 8 (11) :1657-1663
[8]   Spatial genomic heterogeneity within localized, multifocal prostate cancer [J].
Boutros, Paul C. ;
Fraser, Michael ;
Harding, Nicholas J. ;
de Borja, Richard ;
Trudel, Dominique ;
Lalonde, Emilie ;
Meng, Alice ;
Hennings-Yeomans, Pablo H. ;
McPherson, Andrew ;
Sabelnykova, Veronica Y. ;
Zia, Amin ;
Fox, Natalie S. ;
Livingstone, Julie ;
Shiah, Yu-Jia ;
Wang, Jianxin ;
Beck, Timothy A. ;
Have, Cherry L. ;
Chong, Taryne ;
Sam, Michelle ;
Johns, Jeremy ;
Timms, Lee ;
Buchner, Nicholas ;
Wong, Ada ;
Watson, John D. ;
Simmons, Trent T. ;
P'ng, Christine ;
Zafarana, Gaetano ;
Nguyen, Francis ;
Luo, Xuemei ;
Chu, Kenneth C. ;
Prokopec, Stephenie D. ;
Sykes, Jenna ;
Dal Pra, Alan ;
Berlin, Alejandro ;
Brown, Andrew ;
Chan-Seng-Yue, Michelle A. ;
Yousif, Fouad ;
Denroche, Robert E. ;
Chong, Lauren C. ;
Chen, Gregory M. ;
Jung, Esther ;
Fung, Clement ;
Starmans, Maud H. W. ;
Chen, Hanbo ;
Govind, Shaylan K. ;
Hawley, James ;
D'Costa, Alister ;
Pintilie, Melania ;
Waggott, Daryl ;
Hach, Faraz .
NATURE GENETICS, 2015, 47 (07) :736-+
[9]   KRAS: feeding pancreatic cancer proliferation [J].
Bryant, Kirsten L. ;
Mancias, Joseph D. ;
Kimmelman, Alec C. ;
Der, Channing J. .
TRENDS IN BIOCHEMICAL SCIENCES, 2014, 39 (02) :91-100
[10]   High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining [J].
Campton, Daniel E. ;
Ramirez, Arturo B. ;
Nordberg, Joshua J. ;
Drovetto, Nick ;
Clein, Alisa C. ;
Varshavskaya, Paulina ;
Friemel, Barry H. ;
Quarre, Steve ;
Breman, Amy ;
Dorschner, Michael ;
Blau, Sibel ;
Blau, C. Anthony ;
Sabath, Daniel E. ;
Stilwell, Jackie L. ;
Kaldjian, Eric P. .
BMC CANCER, 2015, 15