Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae

被引:281
作者
Vemuri, G. N.
Eiteman, M. A.
McEwen, J. E.
Olsson, L.
Nielsen, J.
机构
[1] Tech Univ Denmark, Ctr Microbial Biotechnol, DK-2800 Lyngby, Denmark
[2] Univ Georgia, Ctr Mol BioEngn, Athens, GA 30602 USA
[3] Univ Arkansas Med Sci, Cent Arkansas Vet Healthcare Syst, Geriatr Res Educ & Clin Ctr, Little Rock, AR 72205 USA
[4] Univ Arkansas Med Sci, Dept Geriatr, Little Rock, AR 72205 USA
关键词
alternative oxidase; Crabtree effect; NADH oxidase; redox metabolism;
D O I
10.1073/pnas.0607469104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Respiratory metabolism plays an important role in energy production in the form of ATP in all aerobically growing cells. However, a limitation in respiratory capacity results in overflow metabolism, leading to the formation of byproducts, a phenomenon known as "overflow metabolism" or "the Crabtree effect." The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely respiratory to mixed respiratory and fermentative. It is well known that glucose repression of respiratory pathways occurs at high glycolytic fluxes, resulting in a decrease in respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree effect is due to limited respiratory capacity or is caused by glucose-mediated repression of respiration. When respiration in S. cerevisiae was increased by introducing a heterologous alternative oxidase, we observed reduced aerobic ethanol formation. In contrast, increasing nonrespiratory NADH oxidation by overexpression of a water-forming NADH oxidase reduced aerobic glycerol formation. The metabolic response to elevated alternative oxidase occurred predominantly in the mitochondria, whereas NADH oxidase affected genes that catalyze cytosolic reactions. Moreover, NADH oxidase restored the deficiency of cytosolic NADH dehydrogenases in S. cerevisiae. These results indicate that NADH oxidase localizes in the cytosol, whereas alternative oxidase is directed to the mitochondria.
引用
收藏
页码:2402 / 2407
页数:6
相关论文
共 42 条
[21]   Isocitrate binding at two functionally distinct sites in yeast NAD+-specific isocitrate dehydrogenase [J].
Lin, AP ;
McAlister-Henn, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (25) :22475-22483
[22]   The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH [J].
Luttik, MAH ;
Overkamp, KM ;
Kötter, P ;
de Vries, S ;
van Dijken, JP ;
Pronk, JT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (38) :24529-24534
[23]   RESPIRATION IN THE YEAST AND MYCELIAL PHASES OF HISTOPLASMA-CAPSULATUM [J].
MARESCA, B ;
LAMBOWITZ, AM ;
KOBAYASHI, GS ;
MEDOFF, G .
JOURNAL OF BACTERIOLOGY, 1979, 138 (02) :647-649
[24]   ISOLATION AND INACTIVATION OF THE NUCLEAR GENE ENCODING THE ROTENONE-INSENSITIVE INTERNAL NADH - UBIQUINONE OXIDOREDUCTASE OF MITOCHONDRIA FROM SACCHAROMYCES-CEREVISIAE [J].
MARRES, CAM ;
DEVRIES, S ;
GRIVELL, LA .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 195 (03) :857-862
[25]   Saccharomyces cerevisiae mitoproteome plasticity in response to recombinant alternative ubiquinol oxidase [J].
Mathy, G ;
Navet, R ;
Gerkens, P ;
Leprince, P ;
De Pauw, E ;
Sluse-Goffart, CM ;
Sluse, FE ;
Douette, P .
JOURNAL OF PROTEOME RESEARCH, 2006, 5 (02) :339-348
[26]   Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri [J].
Moller, K ;
Bro, C ;
Piskur, J ;
Nielsen, J ;
Olsson, L .
FEMS YEAST RESEARCH, 2002, 2 (02) :233-244
[27]   Regulation of NAD+-Dependent isocitrate dehydrogenase in the citrate producing yeast Yarrowia lipolytica [J].
Morgunov, IG ;
Solodovnikova, NY ;
Sharyshev, AA ;
Kamzolova, SV ;
Finogenova, TV .
BIOCHEMISTRY-MOSCOW, 2004, 69 (12) :1391-1398
[28]   It is all about metabolic fluxes [J].
Nielsen, J .
JOURNAL OF BACTERIOLOGY, 2003, 185 (24) :7031-7035
[29]   Switching the mode of metabolism in the yeast Saccharomyces cerevisiae [J].
Otterstedt, K ;
Larsson, C ;
Bill, RM ;
Ståhlberg, A ;
Boles, E ;
Hohmann, S ;
Gustafsson, L .
EMBO REPORTS, 2004, 5 (05) :532-537
[30]   In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria [J].
Overkamp, KM ;
Bakker, BM ;
Kötter, P ;
van Tuijl, A ;
de Vries, S ;
van Dijken, JP ;
Pronk, JT .
JOURNAL OF BACTERIOLOGY, 2000, 182 (10) :2823-2830