ADAPTIVE DENSITY ESTIMATION FOR DIRECTIONAL DATA USING NEEDLETS

被引:41
作者
Baldi, P. [1 ]
Kerkyacharian, G. [2 ]
Marinucci, D. [1 ]
Picard, D. [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00161 Rome, Italy
[2] Lab Probabilites & Modeles Aleatoires, F-75251 Paris 05, France
[3] Univ Paris Diderot, CNRS, LPMA, F-75013 Paris, France
关键词
Density estimation; spherical and directional data; thresholding; needlets; STRONG UNIFORM-CONVERGENCE; ASYMPTOTIC MINIMAX RISK; RIEMANNIAN-MANIFOLDS; SPHERICAL DATA; SPHERES;
D O I
10.1214/09-AOS682
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with density estimation of directional data on the sphere. We introduce a procedure based on thresholding on a new type of spherical wavelets called needlets. We establish a minimax result and prove its optimality. We are motivated by astrophysical applications, in particular in connection with the analysis of ultra high-energy cosmic rays.
引用
收藏
页码:3362 / 3395
页数:34
相关论文
共 24 条
[1]   Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei [J].
Abraham, J. ;
Abreu, P. ;
Aglietta, M. ;
Aguirre, C. ;
Allard, D. ;
Allekotte, I. ;
Allen, J. ;
Allison, P. ;
Alvarez-Muniz, J. ;
Ambrosio, M. ;
Anchordoqui, L. ;
Andringa, S. ;
Anzalone, A. ;
Aramo, C. ;
Argiro, S. ;
Arisaka, K. ;
Armengaud, E. ;
Arneodo, F. ;
Arqueros, F. ;
Asch, T. ;
Asorey, H. ;
Assis, P. ;
Atulugama, B. S. ;
Aublin, J. ;
Ave, M. ;
Avila, G. ;
Baecker, T. ;
Badagnani, D. ;
Barbosa, A. F. ;
Barnhill, D. ;
Barroso, S. L. C. ;
Bauleo, P. ;
Beatty, J. J. ;
Beau, T. ;
Becker, B. R. ;
Becker, K. H. ;
Bellido, J. A. ;
BenZvi, S. ;
Berat, C. ;
Bergmann, T. ;
Bernardini, P. ;
Bertou, X. ;
Biermann, P. L. ;
Billoir, P. ;
Blanch-Bigas, O. ;
Blanco, F. ;
Blasi, P. ;
Bleve, C. ;
Bluemer, H. ;
Bohacova, M. .
ASTROPARTICLE PHYSICS, 2008, 29 (03) :188-204
[2]   Subsampling needlet coefficients on the sphere [J].
Baldi, P. ;
Kerkyacharian, G. ;
Marinucci, D. ;
Picard, D. .
BERNOULLI, 2009, 15 (02) :438-463
[3]   ASYMPTOTICS FOR SPHERICAL NEEDLETS [J].
Baldi, P. ;
Kerkyacharian, G. ;
Marinucci, D. ;
Picard, D. .
ANNALS OF STATISTICS, 2009, 37 (03) :1150-1171
[4]  
BIRGE L, 2001, LPMA IN PRESS
[5]  
Donoho DL, 1996, ANN STAT, V24, P508
[6]   KERNEL DENSITY-ESTIMATION WITH SPHERICAL DATA [J].
HALL, P ;
WATSON, GS ;
CABRERA, J .
BIOMETRIKA, 1987, 74 (04) :751-762
[7]  
Healy DM, 1996, ANN STAT, V24, P232
[8]   Application of fast spherical Fourier transform to density estimation [J].
Hendriks, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 84 (02) :209-221
[9]   STRONG UNIFORM-CONVERGENCE OF DENSITY ESTIMATORS ON COMPACT EUCLIDEAN MANIFOLDS [J].
HENDRIKS, H ;
JANSSEN, JHM ;
RUYMGAART, FH .
STATISTICS & PROBABILITY LETTERS, 1993, 16 (04) :305-311
[10]   Data-driven Sobolev tests of uniformity on compact Riemannian manifolds [J].
Jupp, P. E. .
ANNALS OF STATISTICS, 2008, 36 (03) :1246-1260