Aztec diamonds, checkerboard graphs, and spanning trees

被引:9
作者
Knuth, DE [1 ]
机构
[1] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
关键词
Aztec diamond; spanning tree; graph spectra; enumeration;
D O I
10.1023/A:1008605912200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note derives the characteristic polynomial of a graph that represents nonjump moves in a generalized game of checkers. The number of spanning trees is also determined.
引用
收藏
页码:253 / 257
页数:5
相关论文
共 13 条
[1]  
Borchardt C.W., 1860, J REINE ANGEWANDTE M, V1860, P111, DOI [10.1515/crll.1860.57.111, 10.1515/crll.1860.57.111.1,4, DOI 10.1515/CRLL.1860.57.111.1,4]
[2]  
Culik K., 1958, CASOPIS PEST MAT, V83, P133
[3]  
DRAGOS M, 1980, SPECTRA GRAPHS
[4]  
DRAGOS M, 1988, ANN DISCRETE MATH, V36
[5]  
DVETKOVIC D, 1981, PUBLICATIONS I MATH, V29, P49
[6]  
ELKIES N, 1992, J ALGEBR COMB, V1, P219
[7]  
Elkies N., 1992, J. Algebraic Combin., V1, P111, DOI [10.1023/A:1022420103267, DOI 10.1023/A:1022420103267]
[8]  
GODSIL C, 1975, LECT NOTES MATH, V560, P61
[9]   COMPLEXITY AND EULERIAN CIRCUITS IN TENSORIAL SUMS OF GRAPHS [J].
KREWERAS, G .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 24 (02) :202-212
[10]  
Lovasz L., 1993, COMBINATORIAL PROBLE