Hamilton-Jacobi theory, symmetries and coisotropic reduction

被引:12
作者
de Leon, Manuel [1 ]
Martin de Diego, David [1 ]
Vaquero, Miguel [1 ]
机构
[1] UAM, Inst Ciencias Matemat, ICMAT, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2017年 / 107卷 / 05期
关键词
Hamilton-Jacobi theory; Reduction; Symmetries; Lagrangian submanifolds; SYMPLECTIC INTEGRATION; POISSON; SYSTEMS;
D O I
10.1016/j.matpur.2016.07.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Reduction theory has played a major role in the study of Hamiltonian systems. Whilst the Hamilton-Jacobi theory is one of the main tools to integrate the dynamics of certain Hamiltonian problems and a topic of research on its own. Moreover, the construction of several symplectic integrators relies on approximations of a complete solution of the Hamilton-Jacobi equation. The natural question that we address in this paper is how these two topics (reduction and Hamilton-Jacobi theory) fit together. We obtain a reduction and reconstruction procedure for the Hamilton-Jacobi equation with symmetries, even in a generalized sense to be clarified below. Several applications and relations to other reduction of the Hamilton-Jacobi theory are shown in the last section of the paper. It is remarkable that as by-product we obtain a generalization of the Ge-Marsden reduction procedure [18] and the results in [17]. Quite surprisingly, the classical ansatze available in the literature to solve the Hamilton -Jacobi equation (see [2, 19]) are also particular instances of our framework. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:591 / 614
页数:24
相关论文
共 50 条
  • [1] Extended Hamilton-Jacobi Theory, Symmetries and Integrability by Quadratures
    Grillo, Sergio
    Carlos Marrero, Juan
    Padron, Edith
    MATHEMATICS, 2021, 9 (12)
  • [2] Symmetries and reduction Part II - Lagrangian and Hamilton-Jacobi picture
    Marmo, Giuseppe
    Schiavone, Luca
    Zampini, Alessandro
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (01)
  • [3] A geometric Hamilton-Jacobi theory on a Nambu-Jacobi manifold
    de Leon, M.
    Sardon, C.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16
  • [4] Reviewing the geometric Hamilton-Jacobi theory concerning Jacobi and Leibniz identities
    Esen, O.
    de Leon, M.
    Lainz, M.
    Sardon, C.
    Zajac, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (40)
  • [5] Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization
    Ohsawa, Tomoki
    Fernandez, Oscar E.
    Bloch, Anthony M.
    Zenkov, Dmitry V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (08) : 1263 - 1291
  • [6] HAMILTON-JACOBI THEORY IN CAUCHY DATA SPACE
    Campos, Cedric M.
    de Leon, Manuel
    Martin de Diego, David
    Vaquero, Miguel
    REPORTS ON MATHEMATICAL PHYSICS, 2015, 76 (03) : 359 - 387
  • [7] KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    Marrero, Juan C.
    Munoz-Lecanda, Miguel C.
    JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (03) : 207 - 237
  • [8] A HAMILTON-JACOBI THEORY ON POISSON MANIFOLDS
    de Leon, Manuel
    Martin de Diego, David
    Vaquero, Miguel
    JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (01) : 121 - 140
  • [9] Structural aspects of Hamilton-Jacobi theory
    Carinena, J. F.
    Gracia, X.
    Marmo, G.
    Martinez, E.
    Munoz-Lecanda, M. C.
    Roman-Roy, N.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (02)
  • [10] Hamilton-Jacobi Theory and Information Geometry
    Ciaglia, Florio M.
    Di Cosmo, Fabio
    Marmo, Giuseppe
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 495 - 502