Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

被引:15
作者
Zhang, Shengming [1 ]
Wang, Xuhui [1 ]
Li, Yan [1 ]
Mu, Xuemei [1 ]
Zhang, Yaxiong [1 ]
Du, Jingwei [1 ]
Liu, Guo [1 ]
Hua, Xiaohui [1 ]
Sheng, Yingzhuo [1 ]
Xie, Erqing [1 ]
Zhand, Zhenxing [1 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Key Lab Magnetism & Magnet Mat, Minist Educ,Key Lab Special Funct Mat & Struct De, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
aqueous reduction; carbon nanotubes; iron oxide; nickel oxide; supercapacitors; HIGH-PERFORMANCE; ANODE MATERIALS; HIGH-ENERGY; OXIDE; GRAPHENE; NANOSHEETS; ELECTRODE; POWER; NANOMATERIALS; FABRICATION;
D O I
10.3762/bjnano.10.188
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have successfully prepared iron oxide and nickel oxide on carbon nanotubes on carbon cloth for the use in supercapacitors via a simple aqueous reduction method. The obtained carbon cloth-carbon nanotube@metal oxide (CC-CNT@MO) three-dimensional structures combine the high specific capacitance and rich redox sites of metal oxides with the large specific area and high electrical conductivity of carbon nanotubes. The prepared CC-CNT@Fe2O3 anode reaches a high capacity of 226 mAh.g(-1) at 2 A.g(-1) with a capacitance retention of 40% at 40 A.g(-1). The obtained CC-CNT@NiO cathode exhibits a high capacity of 527 mAh.g(-1 )at 2 A.g(-1) and an excellent rate capability with a capacitance retention of 78% even at 40 A.g(-1). The all-solid-state asymmetric supercapacitor fabricated with these two electrodes delivers a high energy density of 63.3 Wh.kg(-1) at 1.6 kW.kg(-1) and retains 83% of its initial capacitance after 5000 cycles. These results demonstrate that our simple aqueous reduction method to combine CNT and metal oxides reveals an exciting future in constructing high-performance supercapacitors.
引用
收藏
页码:1923 / 1932
页数:10
相关论文
共 46 条
[1]   High-Performance Supercapacitor Applications of NiO-Nanoparticle-Decorated Millimeter-Long Vertically Aligned Carbon Nanotube Arrays via an Effective Supercritical CO2-Assisted Method [J].
Cheng, Junye ;
Zhao, Bin ;
Zhang, Wenkang ;
Shi, Feng ;
Zheng, Guangping ;
Zhang, Deqing ;
Yang, Junhe .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (47) :7381-7391
[2]  
deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
[3]  
2-B
[4]   4.2 V wearable asymmetric supercapacitor devices based on a VOx//MnOx paper electrode and an eco-friendly deep eutectic solvent-based gel electrolyte [J].
Deng, Ming-Jay ;
Chou, Tzung-Han ;
Yeh, Li-Hsien ;
Chen, Jin-Ming ;
Lu, Kueih-Tzu .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (42) :20686-20694
[5]   Modified iron doped polyaniline/sulfonated carbon nanotubes for all symmetric solid-state supercapacitor [J].
El-Khodary, Sherif A. ;
El-Enany, Gaber M. ;
El-Okr, Mohamed ;
Ibrahim, Medhat .
SYNTHETIC METALS, 2017, 233 :41-51
[6]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[7]   Energy Storage in Nanomaterials - Capacitive Pseudocapacitive, or Battery-like? [J].
Gogotsi, Yury ;
Penner, Reginald M. .
ACS NANO, 2018, 12 (03) :2081-2083
[8]   Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors [J].
Guan, Cao ;
Wang, Yadong ;
Hu, Yating ;
Liu, Jilei ;
Ho, Kuan Hung ;
Zhao, Wei ;
Fan, Zhanxi ;
Shen, Zexiang ;
Zhang, Hua ;
Wang, John .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (46) :23283-23288
[9]   Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability [J].
Guan, Cao ;
Liu, Jilei ;
Wang, Yadong ;
Mao, Lu ;
Fan, Zhanxi ;
Shen, Zexiang ;
Zhang, Hua ;
Wang, John .
ACS NANO, 2015, 9 (05) :5198-5207
[10]   An overview of carbon materials for flexible electrochemical capacitors [J].
He, Yongmin ;
Chen, Wanjun ;
Gao, Caitian ;
Zhou, Jinyuan ;
Li, Xiaodong ;
Xie, Erqing .
NANOSCALE, 2013, 5 (19) :8799-8820