Periodic solutions for a class of nonautonomous Hamiltonian systems

被引:18
作者
Long, YM [1 ]
Xu, XJ [1 ]
机构
[1] Nankai Univ, Nankai Inst Math, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
non-autonomous Hamiltonian systems; periodic solutions; saddle point theorem; monotone truncation function;
D O I
10.1016/S0362-546X(98)00288-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, an attempt is made to explore the existence of periodic solutions for a given Hamiltonian system. Results are presented in terms of theorems.
引用
收藏
页码:455 / 463
页数:9
相关论文
共 12 条
[1]  
Ekeland I, 1990, CONVEXITY METHODS HA
[2]   APPLICATIONS OF LOCAL LINKING TO CRITICAL-POINT THEORY [J].
LI, SJ ;
WILLEM, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (01) :6-32
[3]   PERIODIC-SOLUTIONS FOR A CLASS OF NONAUTONOMOUS HAMILTONIAN-SYSTEMS [J].
LI, SJ ;
SZULKIN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 112 (01) :226-238
[4]   MULTIPLE SOLUTIONS OF PERTURBED SUPERQUADRATIC 2ND ORDER HAMILTONIAN-SYSTEMS [J].
LONG, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 311 (02) :749-780
[5]   PERIODIC-SOLUTIONS OF SUPERQUADRATIC HAMILTONIAN-SYSTEMS WITH BOUNDED FORCING TERMS [J].
LONG, Y .
MATHEMATISCHE ZEITSCHRIFT, 1990, 203 (03) :453-467
[6]  
Long Y., 1990, Stock, Process. Phys. Geom, P528
[7]  
LONG Y, 1990, ANN SCOULA NORM SUP, V417, P35
[8]  
Mawhin J., 1989, CRITICAL POINT THEOR
[9]  
Rabinowitz P., 1986, CBMS AM MATH SOC, V65
[10]   PERIODIC-SOLUTIONS OF LARGE NORM OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 50 (01) :33-48