Machine-Learning Supported Vulnerability Detection in Source Code

被引:3
|
作者
Sonnekalb, Tim [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Data Sci, Jena, Germany
来源
ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING | 2019年
关键词
software security; vulnerabilities; vulnerability detection; source code analysis; machine learning on code;
D O I
10.1145/3338906.3341466
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The awareness of writing secure code rises with the increasing number of attacks and their resultant damage. But often, software developers are no security experts and vulnerabilities arise unconsciously during the development process. They use static analysis tools for bug detection, which often come with a high false positive rate. The developers, therefore, need a lot of resources to mind about all alarms, if they want to consistently take care of the security of their software project. We want to investigate, if machine learning techniques could point the user to the position of a security weak point in the source code with a higher accuracy than ordinary methods with static analysis. For this purpose, we focus on current machine learning on code approaches for our initial studies to evolve an efficient way for finding security-related software bugs. We will create a configuration interface to discover certain vulnerabilities, categorized in CWEs. We want to create a benchmark tool to compare existing source code representations and machine learning architectures for vulnerability detection and develop a customizable feature model. At the end of this PhD project, we want to have an easy-to-use vulnerability detection tool based on machine learning on code.
引用
收藏
页码:1180 / 1183
页数:4
相关论文
共 50 条
  • [31] An Automatic Source Code Vulnerability Detection Approach Based on KELM
    Tang, Gaigai
    Yang, Lin
    Ren, Shuangyin
    Meng, Lianxiao
    Yang, Feng
    Wang, Huiqiang
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [32] Android Source Code Vulnerability Detection: A Systematic Literature Review
    Senanayake, Janaka
    Kalutarage, Harsha
    Al-Kadri, Mhd Omar
    Petrovski, Andrei
    Piras, Luca
    ACM COMPUTING SURVEYS, 2023, 55 (09)
  • [33] Machine Learning Methods for Software Vulnerability Detection
    Chernis, Boris
    Verma, Rakesh
    IWSPA '18: PROCEEDINGS OF THE FOURTH ACM INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS, 2018, : 31 - 39
  • [34] Expdf: Exploits Detection System Based on Machine-Learning
    Xin Zhou
    Jianmin Pang
    International Journal of Computational Intelligence Systems, 2019, 12 : 1019 - 1028
  • [35] A Machine-learning based Unbiased Phishing Detection Approach
    Shirazi, Hossein
    Zweigle, Landon
    Ray, Indrakshi
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON E-BUSINESS AND TELECOMMUNICATIONS (SECRYPT), VOL 1, 2020, : 423 - 430
  • [36] Shifting Left for Early Detection of Machine-Learning Bugs
    Liblit, Ben
    Luo, Linghui
    Molina, Alejandro
    Mukherjee, Rajdeep
    Patterson, Zachary
    Piskachev, Goran
    Schaf, Martin
    Tripp, Omer
    Visser, Willem
    FORMAL METHODS, FM 2023, 2023, 14000 : 584 - 597
  • [37] A Machine-Learning Approach for Detection and Quantification of QRS Fragmentation
    Goovaerts, Griet
    Padhy, Sibasankar
    Vandenberk, Bert
    Varon, Carolina
    Willems, Rik
    Van Huffel, Sabine
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (05) : 1980 - 1989
  • [38] Expdf: Exploits Detection System Based on Machine-Learning
    Zhou, Xin
    Pang, Jianmin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (02) : 1019 - 1028
  • [39] Using Machine-Learning for the Damage Detection of Harbour Structures
    Hake, Frederic
    Goettert, Leonard
    Neumann, Ingo
    Alkhatib, Hamza
    REMOTE SENSING, 2022, 14 (11)
  • [40] A Review on Sarcasm Detection from Machine-Learning Perspective
    Wicana, Setra Genyang
    Ibisoglu, Taha Yasin
    Yavanoglu, Uraz
    2017 11TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2017, : 469 - 476