Matching graphs of hypercubes and complete bipartite graphs

被引:15
作者
Fink, Jiri [1 ]
机构
[1] Charles Univ Prague, Dept Appl Math, Fac Math & Phys, CR-11800 Prague 1, Czech Republic
关键词
HAMILTON CYCLES; EXTEND;
D O I
10.1016/j.ejc.2009.03.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kreweras' conjecture [G. Kreweras. Matchings and hamiltonian cycles on hypercubes, Bull. Inst. Combin. Appl. 16 (1996) 87-91] asserts that every perfect matching of the hypercube Q(d) can be extended to a Hamiltonian cycle of Qd. We [Jiri Fink, Perfect matchings extend to hamilton cycles in hypercubes, J. Combin. Theory Ser. B, 97 (6) (2007) 1074-1076] proved this conjecture but here we present a simplified proof. The matching graph X(G) of a graph G has a vertex set of all perfect matchings of G, with two vertices being adjacent whenever the union of the corresponding perfect matchings forms a Hamiltonian cycle of G. We show that the matching graph M(K(n,n)) of a complete bipartite graph is bipartite if and only if n is even or n = 1. We prove that M(K(n,n)) is connected for n even and M(K(n,n)) has two components for n add, n >= 3. We also compute distances between perfect matchings in M.(K(n,n)) (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1624 / 1629
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 2005, ART COMPUTER PROGRAM
[2]  
DIMITROV D, GRAY CODES FAU UNPUB
[3]   Hamiltonian cycles with prescribed edges in hypercubes [J].
Dvorák, T .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (01) :135-144
[4]  
FELER T, 2007, TR07, V63
[5]  
FINK J, 2007, SIAM J DISC IN PRESS
[6]   Perfect matchings extend to Hamilton cycles in hypercubes [J].
Fink, Jiri .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) :1074-1076
[7]   Perfect matchings extending on subcubes to Hamiltonian cycles of hypercubes [J].
Gregor, Petr .
DISCRETE MATHEMATICS, 2009, 309 (06) :1711-1713
[8]  
Gros Louis A., 1872, THEORIE BAGUENODIER
[9]  
Kreweras G., 1996, B I COMBIN APPL, V16, P87
[10]   HAMILTON CYCLES THAT EXTEND TRANSPOSITION MATCHINGS IN CAYLEY-GRAPHS OF SN [J].
RUSKEY, F ;
SAVAGE, C .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (01) :152-166