Degenerate elliptic equations with nonlinear boundary conditions and measures data

被引:0
作者
Andreu, Fuensanta [1 ]
Igbida, Noureddine [2 ]
Mazon, Jose M. [1 ]
Toledo, Julian [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
[2] Univ Picardie Jules Verne, CNRS, LAMFA, UMR 6140, F-80038 Amiens, France
关键词
SEMILINEAR EQUATIONS; SINGULARITIES; EXISTENCE; UNIQUENESS; L1;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the questions of existence and uniqueness of solutions for equations of type -div a(x, Du) + gamma(u) (sic) mu(1), posed in an open bounded subset Omega of R(N), with nonlinear boundary conditions of the form a(x, Du).eta+beta(u) (sic) mu(2). The nonlinear elliptic operator div a(x, Du) is modeled on the p-Laplacian operator Delta p(u) = div (vertical bar Du vertical bar(p-2)Du), with p > 1, gamma and beta are maximal monotone graphs in R(2) such that 0 is an element of gamma(0) boolean AND beta(0) and the data mu(1) and mu(2) are measures.
引用
收藏
页码:767 / 803
页数:37
相关论文
共 50 条
  • [31] A Monotone Iterative Technique for Nonlinear Fourth Order Elliptic Equations with Nonlocal Boundary Conditions
    Sunny, Linia Anie
    Vijesh, V. Antony
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) : 275 - 298
  • [32] Vanishing viscosity limits for the degenerate lake equations with Navier boundary conditions
    Jiu, Quansen
    Niu, Dongjuan
    Wu, Jiahong
    NONLINEARITY, 2012, 25 (03) : 641 - 655
  • [33] Degenerate parabolic equations with partial boundary value conditions
    Zhan, Huashui
    Feng, Zhaosheng
    APPLICABLE ANALYSIS, 2023, 102 (12) : 3444 - 3462
  • [34] Nonlinear degenerate parabolic equations with measure data
    Li, FQ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (07) : 1269 - 1282
  • [35] Boundary behavior of positive solutions to nonlinear elliptic equations with Hardy potential
    Du, Yihong
    Wei, Lei
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 : 731 - 749
  • [36] Boundary behavior of large solutions to elliptic equations with nonlinear gradient terms
    Mi, Ling
    Liu, Bin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04): : 1283 - 1304
  • [37] Impulsive fractional differential equations with nonlinear boundary conditions
    Cao, Jianxin
    Chen, Haibo
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 303 - 311
  • [38] Degenerate triply nonlinear problems with nonhomogeneous boundary conditions
    Ammar, Kaouther
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (03): : 548 - 568
  • [39] A boundary expansion of solutions to nonlinear singular elliptic equations
    Jian, Huaiyu
    Lu, Jian
    Wang, Xu-Jia
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (01) : 9 - 30
  • [40] Optimal boundary regularity for nonlinear singular elliptic equations
    Jian, Huaiyu
    Wang, Xu-jia
    ADVANCES IN MATHEMATICS, 2014, 251 : 111 - 126