Big Data in sleep apnoea: Opportunities and challenges

被引:40
作者
Pepin, Jean-Louis [1 ,2 ]
Bailly, Sebastien [1 ,2 ]
Tamisier, Renaud [1 ,2 ]
机构
[1] Univ Grenoble Alpes, INSERM, U1042, HP2 Lab, Grenoble, France
[2] CHU Grenoble Alpes, EFCR Lab, Grenoble, France
关键词
artificial intelligence; Big Data; continuous positive airway pressure; electronic medical record; precision medicine; HEALTH-CARE; OSA MANAGEMENT; CPAP TREATMENT; MEDICINE; PHENOTYPES; ADHERENCE; POLLUTION; TRIALS; WORLD;
D O I
10.1111/resp.13669
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Sleep apnoea is now regarded as a highly prevalent systemic, multimorbid, chronic disease requiring a combination of long-term home-based treatments. Optimization of personalized treatment strategies requires accurate patient phenotyping. Data to describe the broad variety of phenotypes can come from electronic health records, health insurance claims, socio-economic administrative databases, environmental monitoring, social media, etc. Connected devices in and outside homes collect vast amount of data amassed in databases. All this contributes to 'Big Data' that, if used appropriately, has great potential for the benefit of health, well-being and therapeutics. Sleep apnoea is particularly well placed with regards to Big Data because the primary treatment is positive airway pressure (PAP). PAP devices, used every night over long periods by millions of patients across the world, generate an enormous amount of data. In this review, we discuss how different types of Big Data have, and could be, used to improve our understanding of sleep-disordered breathing, to identify undiagnosed sleep apnoea, to personalize treatment and to adapt health policies and better allocate resources. We discuss some of the challenges of Big Data including the need for appropriate data management, compilation and analysis techniques employing innovative statistical approaches alongside machine learning/artificial intelligence; closer collaboration between data scientists and physicians; and respect of the ethical and regulatory constraints of collecting and using Big Data. Lastly, we consider how Big Data can be used to overcome the limitations of randomized clinical trials and advance real-life evidence-based medicine for sleep apnoea.
引用
收藏
页码:486 / 494
页数:9
相关论文
共 85 条
[1]   Blockchain Technology in Healthcare: A Systematic Review [J].
Agbo, Cornelius C. ;
Mahmoud, Qusay H. ;
Eklund, J. Mikael .
HEALTHCARE, 2019, 7 (02)
[2]   Precision medicine in obstructive sleep apnoea [J].
Angel Martinez-Garcia, Miguel ;
Campos-Rodriguez, Francisco ;
Barbe, Ferran ;
Gozal, David ;
Agusti, Alvar .
LANCET RESPIRATORY MEDICINE, 2019, 7 (05) :456-464
[3]   Transforming health policy through machine learning [J].
Ashrafian, Hutan ;
Darzi, Ara .
PLOS MEDICINE, 2018, 15 (11)
[4]   Partial failure of CPAP treatment for sleep apnoea: Analysis of the French national sleep database [J].
Bailly, Sebastien ;
Daabek, Najeh ;
Jullian-Desayes, Ingrid ;
Joyeux-Faure, Marie ;
Sapene, Marc ;
Grillet, Yves ;
Borel, Jean-Christian ;
Tamisier, Renaud ;
Pepin, Jean-Louis .
RESPIROLOGY, 2020, 25 (01) :104-111
[5]   What's new in ICU in 2050: big data and machine learning [J].
Bailly, Sebastien ;
Meyfroidt, Geert ;
Timsit, Jean-Francois .
INTENSIVE CARE MEDICINE, 2018, 44 (09) :1524-1527
[6]   Obstructive Sleep Apnea: A Cluster Analysis at Time of Diagnosis [J].
Bailly, Sebastien ;
Destors, Marie ;
Grillet, Yves ;
Richard, Philippe ;
Stach, Bruno ;
Vivodtzev, Isabelle ;
Timsit, Jean-Francois ;
Levy, Patrick ;
Tamisier, Renaud ;
Pepin, Jean-Louis .
PLOS ONE, 2016, 11 (06)
[7]   Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis [J].
Benjafield, Adam V. ;
Ayas, Najib T. ;
Eastwood, Peter R. ;
Heinzer, Raphael ;
Ip, Mary S. M. ;
Morrell, Mary J. ;
Nunez, Carlos M. ;
Patel, Sanjay R. ;
Penzel, Thomas ;
Pepin, Jean-Louis D. ;
Peppard, Paul E. ;
Sinha, Sanjeev ;
Tufik, Sergio ;
Valentine, Kate ;
Malhotra, Atul .
LANCET RESPIRATORY MEDICINE, 2019, 7 (08) :687-698
[8]   Personalised medicine in sleep respiratory disorders: focus on obstructive sleep apnoea diagnosis and treatment [J].
Bonsignore, Maria R. ;
Suarez Giron, Monique C. ;
Marrone, Oreste ;
Castrogiovanni, Alessandra ;
Montserrat, Josep M. .
EUROPEAN RESPIRATORY REVIEW, 2017, 26 (146)
[9]   POLLAR: Impact of air POLLution on Asthma and Rhinitis; a European Institute of Innovation and Technology Health (EIT Health) project [J].
Bousquet, Jean ;
Anto, Josep M. ;
Annesi-Maesano, Isabella ;
Dedeu, Toni ;
Dupas, Eve ;
Pepin, Jean-Louis ;
Eyindanga, Landry Stephane Zeng ;
Arnavielhe, Sylvie ;
Ayache, Julia ;
Basagana, Xavier ;
Benveniste, Samuel ;
Venturos, Nuria Calves ;
Chan, Hing Kin ;
Cheraitia, Mehdi ;
Dauvilliers, Yves ;
Garcia-Aymerich, Judith ;
Jullian-Desayes, Ingrid ;
Dinesh, Chitra ;
Laune, Daniel ;
Dac, Jade Lu ;
Nujurally, Ismael ;
Pau, Giovanni ;
Picard, Robert ;
Rodo, Xavier ;
Tamisier, Renaud ;
Bewick, Michael ;
Billo, Nils E. ;
Czarlewski, Wienczyslawa ;
Fonseca, Joao ;
Klimek, Ludger ;
Pfaar, Oliver ;
Bourez, Jean-Marc .
CLINICAL AND TRANSLATIONAL ALLERGY, 2018, 8
[10]   The Role of Big Data in the Management of Sleep-Disordered Breathing [J].
Budhiraja, Rohit ;
Thomas, Robert ;
Kim, Matthew ;
Redline, Susan .
SLEEP MEDICINE CLINICS, 2016, 11 (02) :241-+