Big Data in sleep apnoea: Opportunities and challenges

被引:35
作者
Pepin, Jean-Louis [1 ,2 ]
Bailly, Sebastien [1 ,2 ]
Tamisier, Renaud [1 ,2 ]
机构
[1] Univ Grenoble Alpes, INSERM, U1042, HP2 Lab, Grenoble, France
[2] CHU Grenoble Alpes, EFCR Lab, Grenoble, France
关键词
artificial intelligence; Big Data; continuous positive airway pressure; electronic medical record; precision medicine; HEALTH-CARE; OSA MANAGEMENT; CPAP TREATMENT; MEDICINE; PHENOTYPES; ADHERENCE; POLLUTION; TRIALS; WORLD;
D O I
10.1111/resp.13669
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Sleep apnoea is now regarded as a highly prevalent systemic, multimorbid, chronic disease requiring a combination of long-term home-based treatments. Optimization of personalized treatment strategies requires accurate patient phenotyping. Data to describe the broad variety of phenotypes can come from electronic health records, health insurance claims, socio-economic administrative databases, environmental monitoring, social media, etc. Connected devices in and outside homes collect vast amount of data amassed in databases. All this contributes to 'Big Data' that, if used appropriately, has great potential for the benefit of health, well-being and therapeutics. Sleep apnoea is particularly well placed with regards to Big Data because the primary treatment is positive airway pressure (PAP). PAP devices, used every night over long periods by millions of patients across the world, generate an enormous amount of data. In this review, we discuss how different types of Big Data have, and could be, used to improve our understanding of sleep-disordered breathing, to identify undiagnosed sleep apnoea, to personalize treatment and to adapt health policies and better allocate resources. We discuss some of the challenges of Big Data including the need for appropriate data management, compilation and analysis techniques employing innovative statistical approaches alongside machine learning/artificial intelligence; closer collaboration between data scientists and physicians; and respect of the ethical and regulatory constraints of collecting and using Big Data. Lastly, we consider how Big Data can be used to overcome the limitations of randomized clinical trials and advance real-life evidence-based medicine for sleep apnoea.
引用
收藏
页码:486 / 494
页数:9
相关论文
共 85 条
  • [1] Blockchain Technology in Healthcare: A Systematic Review
    Agbo, Cornelius C.
    Mahmoud, Qusay H.
    Eklund, J. Mikael
    [J]. HEALTHCARE, 2019, 7 (02)
  • [2] Precision medicine in obstructive sleep apnoea
    Angel Martinez-Garcia, Miguel
    Campos-Rodriguez, Francisco
    Barbe, Ferran
    Gozal, David
    Agusti, Alvar
    [J]. LANCET RESPIRATORY MEDICINE, 2019, 7 (05) : 456 - 464
  • [3] Transforming health policy through machine learning
    Ashrafian, Hutan
    Darzi, Ara
    [J]. PLOS MEDICINE, 2018, 15 (11)
  • [4] Partial failure of CPAP treatment for sleep apnoea: Analysis of the French national sleep database
    Bailly, Sebastien
    Daabek, Najeh
    Jullian-Desayes, Ingrid
    Joyeux-Faure, Marie
    Sapene, Marc
    Grillet, Yves
    Borel, Jean-Christian
    Tamisier, Renaud
    Pepin, Jean-Louis
    [J]. RESPIROLOGY, 2020, 25 (01) : 104 - 111
  • [5] What's new in ICU in 2050: big data and machine learning
    Bailly, Sebastien
    Meyfroidt, Geert
    Timsit, Jean-Francois
    [J]. INTENSIVE CARE MEDICINE, 2018, 44 (09) : 1524 - 1527
  • [6] Obstructive Sleep Apnea: A Cluster Analysis at Time of Diagnosis
    Bailly, Sebastien
    Destors, Marie
    Grillet, Yves
    Richard, Philippe
    Stach, Bruno
    Vivodtzev, Isabelle
    Timsit, Jean-Francois
    Levy, Patrick
    Tamisier, Renaud
    Pepin, Jean-Louis
    [J]. PLOS ONE, 2016, 11 (06):
  • [7] Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis
    Benjafield, Adam V.
    Ayas, Najib T.
    Eastwood, Peter R.
    Heinzer, Raphael
    Ip, Mary S. M.
    Morrell, Mary J.
    Nunez, Carlos M.
    Patel, Sanjay R.
    Penzel, Thomas
    Pepin, Jean-Louis D.
    Peppard, Paul E.
    Sinha, Sanjeev
    Tufik, Sergio
    Valentine, Kate
    Malhotra, Atul
    [J]. LANCET RESPIRATORY MEDICINE, 2019, 7 (08) : 687 - 698
  • [8] Personalised medicine in sleep respiratory disorders: focus on obstructive sleep apnoea diagnosis and treatment
    Bonsignore, Maria R.
    Suarez Giron, Monique C.
    Marrone, Oreste
    Castrogiovanni, Alessandra
    Montserrat, Josep M.
    [J]. EUROPEAN RESPIRATORY REVIEW, 2017, 26 (146)
  • [9] POLLAR: Impact of air POLLution on Asthma and Rhinitis; a European Institute of Innovation and Technology Health (EIT Health) project
    Bousquet, Jean
    Anto, Josep M.
    Annesi-Maesano, Isabella
    Dedeu, Toni
    Dupas, Eve
    Pepin, Jean-Louis
    Eyindanga, Landry Stephane Zeng
    Arnavielhe, Sylvie
    Ayache, Julia
    Basagana, Xavier
    Benveniste, Samuel
    Venturos, Nuria Calves
    Chan, Hing Kin
    Cheraitia, Mehdi
    Dauvilliers, Yves
    Garcia-Aymerich, Judith
    Jullian-Desayes, Ingrid
    Dinesh, Chitra
    Laune, Daniel
    Dac, Jade Lu
    Nujurally, Ismael
    Pau, Giovanni
    Picard, Robert
    Rodo, Xavier
    Tamisier, Renaud
    Bewick, Michael
    Billo, Nils E.
    Czarlewski, Wienczyslawa
    Fonseca, Joao
    Klimek, Ludger
    Pfaar, Oliver
    Bourez, Jean-Marc
    [J]. CLINICAL AND TRANSLATIONAL ALLERGY, 2018, 8
  • [10] The Role of Big Data in the Management of Sleep-Disordered Breathing
    Budhiraja, Rohit
    Thomas, Robert
    Kim, Matthew
    Redline, Susan
    [J]. SLEEP MEDICINE CLINICS, 2016, 11 (02) : 241 - +