On Hecke eigenvalues at Piatetski-Shapiro primes

被引:5
作者
Baier, Stephan [1 ]
Zhao, Liangyi [2 ]
机构
[1] Jacobs Univ, Sch Sci & Engn, D-28725 Bremen, Germany
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2010年 / 81卷
关键词
NUMBER THEOREM; EXPONENTIAL-SUMS; COEFFICIENTS; MONOMIALS;
D O I
10.1112/jlms/jdp064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda(n) be the normalized nth Fourier coefficient of a holomorphic cusp form for the full modular group. We show that, for some constant C > 0 depending on the cusp form and every fixed c in the range 1 < c < 8/7, the mean value of lambda(p) is O (exp (-C root log N)) as p runs over all (Piatetski-Shapiro) primes of the form [n(c)] with n is an element of N and n <= N.
引用
收藏
页码:175 / 201
页数:27
相关论文
共 30 条
[11]  
Heath-Brown DR, 2001, ACTA MATH-DJURSHOLM, V186, P1
[12]   THE PJATECKII-SAPIRO PRIME NUMBER THEOREM [J].
HEATHBROWN, DR .
JOURNAL OF NUMBER THEORY, 1983, 16 (02) :242-266
[13]  
Iwaniec H., 2004, Amer. Math. Soc. Colloq. Publ., V53
[14]  
Iwaniec H., 2001, Inst. Hautes tudes Sci. Publ. Math, V91, P55, DOI [DOI 10.1007/BF02698741, 10.1007/BF02698741]
[15]  
JIA CH, 1993, SCI CHINA SER A, V36, P913
[16]  
JIA CH, 1994, CHINESE ANN MATH B, V15, P9
[17]  
JIA CH, 1994, CHINESE ANN MATH B, V15, P123
[18]  
Jutila M., 1987, TATA I FUNDAMENTAL R, V80
[19]   PRIMES OF THE FORM [NC] [J].
KOLESNIK, G .
PACIFIC JOURNAL OF MATHEMATICS, 1985, 118 (02) :437-447
[20]  
Kolesnik G., 1969, MAT ZAMETKI, V6, P545