On Hecke eigenvalues at Piatetski-Shapiro primes

被引:5
作者
Baier, Stephan [1 ]
Zhao, Liangyi [2 ]
机构
[1] Jacobs Univ, Sch Sci & Engn, D-28725 Bremen, Germany
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2010年 / 81卷
关键词
NUMBER THEOREM; EXPONENTIAL-SUMS; COEFFICIENTS; MONOMIALS;
D O I
10.1112/jlms/jdp064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda(n) be the normalized nth Fourier coefficient of a holomorphic cusp form for the full modular group. We show that, for some constant C > 0 depending on the cusp form and every fixed c in the range 1 < c < 8/7, the mean value of lambda(p) is O (exp (-C root log N)) as p runs over all (Piatetski-Shapiro) primes of the form [n(c)] with n is an element of N and n <= N.
引用
收藏
页码:175 / 201
页数:27
相关论文
共 30 条
[1]  
ADHIKARI SD, 1991, ACTA ARITH, V57, P83
[2]  
BAIER S, 2005, ANALYSIS MUNICH, V25, P87
[3]   Sums of Hecke Eigenvalues over Values of Quadratic Polynomials [J].
Blomer, Valentin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[4]   FUNCTIONAL EQUATIONS WITH MULTIPLE GAMMA FACTORS AND AVERAGE ORDER OF ARITHMETICAL FUNCTIONS [J].
CHANDRASEKHARAN, K ;
NARASIMHA, R .
ANNALS OF MATHEMATICS, 1962, 76 (01) :93-&
[5]  
Deligne P., 1980, PUBL MATH I HAUTES E, V52, P137
[6]  
Deligne P., 1974, PUBL MATH-PARIS, V43, P273, DOI 10.1007/BF02684373
[7]  
Deshouillers J.- M., 1976, CR ACAD SCI A B, V282, pA131
[8]   EXPONENTIAL-SUMS WITH MONOMIALS [J].
FOUVRY, E ;
IWANIEC, H .
JOURNAL OF NUMBER THEORY, 1989, 33 (03) :311-333
[9]   The polynomial X2+Y4 captures its primes [J].
Friedlander, J ;
Iwaniec, H .
ANNALS OF MATHEMATICS, 1998, 148 (03) :945-1040
[10]  
Graham S. W., 1991, London Math. Soc. Lecture Note Ser., V126