Role of grain boundaries in ZnO nanowire field-effect transistors

被引:14
作者
Yoon, Youngki [1 ]
Lin, Jenshan
Pearton, Stephen J.
Guo, Jing
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
D O I
10.1063/1.2422747
中图分类号
O59 [应用物理学];
学科分类号
摘要
ZnO nanowires have attracted strong interest for potential nanoelectronics, optoelectronics, and nanosensor applications. The role of grain boundaries (GBs) in ZnO nanowire transistors is examined by solving a two-dimensional Schrodinger equation in the nanowire cross section, coupled to a drift-diffusion equation along the nanowire. We show that a GB results in a potential barrier with the thickness determined by the gate insulator thickness and the height determined by the number of the trap states at the GB. The GB leads to a decrease of the source-drain current because the voltage drop at the GB reduces the electric field at other channel positions. The on current depends on the nanowire diameter nonmonotonically due to two competing mechanisms. Increasing the number of GBs in the channel decreases both the on current and off current. When the total number of GBs is small, its effect on the I-V characteristics can be phenomenologically viewed as an increase of the threshold voltage. When the total number of GBs is larger, it must be viewed as a combined effect of the increase of the threshold voltage and the decrease of the channel effective mobility. (c) 2007 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 17 条
[1]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[2]   ZnO nanowire transistors [J].
Goldberger, J ;
Sirbuly, DJ ;
Law, M ;
Yang, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (01) :9-14
[3]   Silicon vertically integrated nanowire field effect transistors [J].
Goldberger, Josh ;
Hochbaum, Allon I. ;
Fan, Rong ;
Yang, Peidong .
NANO LETTERS, 2006, 6 (05) :973-977
[4]   Electrostatics of nanowire transistors [J].
Guo, J ;
Wang, J ;
Polizzi, E ;
Datta, S ;
Lundstrom, M .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2003, 2 (04) :329-334
[5]   Depletion-mode ZnO nanowire field-effect transistor [J].
Heo, YW ;
Tien, LC ;
Kwon, Y ;
Norton, DP ;
Pearton, SJ ;
Kang, BS ;
Ren, F .
APPLIED PHYSICS LETTERS, 2004, 85 (12) :2274-2276
[6]  
Hoffman RL, 2006, ZINC OXIDE BULK, THIN FILMS AND NANOSTRUCTURES: PROCESSING, PROPERTIES AND APPLICATIONS, P415, DOI 10.1016/B978-008044722-3/50012-9
[7]   ZnO-based transparent thin-film transistors [J].
Hoffman, RL ;
Norris, BJ ;
Wager, JF .
APPLIED PHYSICS LETTERS, 2003, 82 (05) :733-735
[8]   Modeling of grain boundary barrier modulation in ZnO invisible thin film transistors [J].
Hossain, FM ;
Nishii, J ;
Takagi, S ;
Sugihara, T ;
Ohtomo, A ;
Fukumura, T ;
Koinuma, H ;
Ohno, H ;
Kawasaki, M .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 21 (2-4) :911-915
[9]   Recent advances in ZnO materials and devices [J].
Look, DC .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 80 (1-3) :383-387
[10]   Small-diameter silicon nanowire surfaces [J].
Ma, DDD ;
Lee, CS ;
Au, FCK ;
Tong, SY ;
Lee, ST .
SCIENCE, 2003, 299 (5614) :1874-1877