On the semirelativistic Hartree-type equation

被引:77
作者
Cho, Yonggeun [1 ]
Ozawa, Tohru [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
semirelativistic Hartree-type equation; global solution; scattering; nonexistence of asymptotically free solutions;
D O I
10.1137/060653688
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global Cauchy problem and scattering problem for the semirelativistic Hartree-type equation in R-n, n = 1, with nonlocal nonlinearity F(u) = lambda(vertical bar x vertical bar(-gamma) * vertical bar u vertical bar(2)) u, 0 < gamma < n. We prove the existence and uniqueness of global solutions for 0 < gamma < (2n)/(n + 1), n >= 2 or gamma > 2, n >= 3, and the nonexistence of asymptotically-free solutions for 0 < gamma <= 1, n >= 3. We also specify asymptotic behavior of solutions as the mass tends to zero and in. nity.
引用
收藏
页码:1060 / 1074
页数:15
相关论文
共 37 条
[1]  
[Anonymous], 1989, CBMS REG C SER MATH
[2]  
[Anonymous], HARMONIC ANAL
[3]  
BAHCELOT A, 1986, ANN FAC SCI TOULOUSE, V5, P37
[5]  
Bergh J., 1976, INTERPOLATION SPACES
[6]   ON SCATTERING AND EVERYWHERE DEFINED SCATTERING OPERATORS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
BRENNER, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (03) :310-344
[7]  
Cazenave T., 2003, Semilinear Schrodinger equations, V10
[8]   Remarks on modified improved Boussinesq equations in one space dimension [J].
Cho, Yonggeun ;
Ozawa, Tohru .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2071) :1949-1963
[9]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[10]  
ELGART A, IN PRESS COMM PURE A