A conjectured upper bound on the Choptuik critical exponents

被引:1
|
作者
Hod, Shahar [1 ,2 ]
机构
[1] Ruppin Acad Ctr, IL-40250 Emek Hefer, Israel
[2] Hadassah Acad Coll, IL-91010 Jerusalem, Israel
关键词
D O I
10.1016/j.nuclphysb.2021.115353
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Near-critical type II gravitational collapse is characterized by the formation of arbitrarily small black holes whose horizon radii are described by the simple scaling law r(BH) alpha (p - p*)(gamma), where gamma is the matter-dependent Choptuik critical exponent and Delta p p - p* is the phase space distance from the exact self-similar critical evolution. We point out that all matter models studied thus far in the physics literature are characterized by the upper bound gamma <= 1. We conjecture that this is a generic feature of non-linear gravitational collapse scenarios. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Upper bound on the black-hole critical exponents
    Shahar Hod
    The European Physical Journal Plus, 137
  • [2] Upper bound on the black-hole critical exponents
    Hod, Shahar
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (06):
  • [3] ON THE UPPER CRITICAL DIMENSION AND THE CRITICAL EXPONENTS OF THE LOCALIZATION TRANSITION
    KUNZ, H
    SOUILLARD, B
    JOURNAL DE PHYSIQUE LETTRES, 1983, 44 (13): : L503 - L506
  • [4] A conjectured bound on accidental symmetries
    Buican, Matthew
    PHYSICAL REVIEW D, 2012, 85 (02):
  • [5] Choptuik’s Critical Spacetime Exists
    Michael Reiterer
    Eugene Trubowitz
    Communications in Mathematical Physics, 2019, 368 : 143 - 186
  • [6] Choptuik's Critical Spacetime Exists
    Reiterer, Michael
    Trubowitz, Eugene
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 368 (01) : 143 - 186
  • [7] Counterexample to the conjectured Planckian bound on transport
    Poniatowski, Nicholas R.
    Sarkar, Tarapada
    Lobo, Ricardo P. S. M.
    Das Sarma, Sankar
    Greene, Richard L.
    PHYSICAL REVIEW B, 2021, 104 (23)
  • [8] UPPER-BOUNDS FOR TRANSPORT CRITICAL EXPONENTS IN PERCOLATION
    ROUX, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1985, 301 (06): : 367 - 370
  • [9] UNIQUENESS OF POSITIVE BOUND STATES TO SCHRODINGER SYSTEMS WITH CRITICAL EXPONENTS
    Li, Congming
    Ma, Li
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (03) : 1049 - 1057
  • [10] Lyapunov exponents of random walks in small random potential: the upper bound
    Mountford, Thomas
    Mourrat, Jean-Christophe
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 18