The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators

被引:53
作者
Capparelli, S.
Lepowsky, J. [1 ]
Milas, A.
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[3] Univ Roma La Sapienza, Dipartimento Me Mo Mat, I-00161 Rome, Italy
基金
美国国家科学基金会;
关键词
affine Lie algebras; difference equations; vertex operator algebras;
D O I
10.1007/s11139-006-0150-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the theory of intertwining operators for vertex operator algebras we show that the graded dimensions of the principal subspaces associated to the standard modules for sl(2) satisfy certain classical recursion formulas of Rogers and Selberg. These recursions were exploited by Andrews in connection with Gordon's generalization of the Rogers-Ramanujan identities and with Andrews' related identities. The present work generalizes the authors' previous work on intertwining operators and the Rogers-Ramanujan recursion.
引用
收藏
页码:379 / 397
页数:19
相关论文
共 39 条
[1]  
Andrews G. E., 1976, ENCY MATH ITS APPL, V2
[2]  
Andrews G.E., 1967, J COMB THEORY, V2, P431
[3]   AN ANALYTIC PROOF OF ROGERS-RAMANUJAN-GORDON IDENTITIES [J].
ANDREWS, GE .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (04) :844-&
[4]   ANALYTIC GENERALIZATION OF ROGERS-RAMANUJAN IDENTITIES FOR ODD MODULI [J].
ANDREWS, GE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (10) :4082-4085
[5]  
ANDREWS GE, 1967, J COMB THEORY, V2, P422
[6]  
[Anonymous], 1993, MEMOIRS AM MATH SOC
[7]  
[Anonymous], 2003, PROGR MATH
[8]   GENERALIZATION OF THE ROGERS-RAMANUJAN IDENTITIES FOR ALL MODULI [J].
BRESSOUD, DM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 27 (01) :64-68
[9]   The Rogers-Ramanujan recursion and intertwining operators [J].
Capparelli, S ;
Lepowsky, J ;
Milas, A .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (06) :947-966
[10]  
Dong C., 1993, PROGR MATH, V112