The Longest Minimum-Weight Path in a Complete Graph

被引:11
作者
Addario-Berry, Louigi [1 ]
Broutin, Nicolas [2 ]
Lugosi, Gabor [3 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] INRIA Rocquencourt, Projet Algorithms, F-78153 Le Chesnay, France
[3] Pompeu Fabra Univ, Dept Econ, Barcelona 08005, Spain
关键词
SHORTEST-PATH; TREES; HEIGHTS;
D O I
10.1017/S0963548309990204
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the minimum-weight path between any pair of nodes of the n-vertex complete graph in which the weights of the edges are i.i.d. exponentially distributed random variables. We show that the longest of these minimum-weight paths has about alpha* log n edges, where alpha* approximate to 3.5911 is the unique solution of the equation alpha log alpha - alpha = 1. This answers a question posed by Janson [8].
引用
收藏
页码:1 / 19
页数:19
相关论文
共 15 条
[11]  
Rogers L.C.G., 2000, Diffusions, Markov Processes and Martingales, V1
[12]  
Shorack G. R., 1986, EMPIRICAL PROCESSES
[13]  
Smythe R., 1995, THEORY PROBAB MATH S, V51, P1
[14]   The weight of the shortest path tree [J].
van der Hofstad, Remco ;
Hooghiemstra, Gerard ;
Van Mieghem, Piet .
RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (03) :359-379
[15]   Size and weight of shortest path trees with exponential link weights [J].
Van Der Hofstad, Remco ;
Hooghiemstra, Gerard ;
Van Mieghem, Piet .
COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (06) :903-926