The Longest Minimum-Weight Path in a Complete Graph

被引:11
作者
Addario-Berry, Louigi [1 ]
Broutin, Nicolas [2 ]
Lugosi, Gabor [3 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] INRIA Rocquencourt, Projet Algorithms, F-78153 Le Chesnay, France
[3] Pompeu Fabra Univ, Dept Econ, Barcelona 08005, Spain
关键词
SHORTEST-PATH; TREES; HEIGHTS;
D O I
10.1017/S0963548309990204
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the minimum-weight path between any pair of nodes of the n-vertex complete graph in which the weights of the edges are i.i.d. exponentially distributed random variables. We show that the longest of these minimum-weight paths has about alpha* log n edges, where alpha* approximate to 3.5911 is the unique solution of the equation alpha log alpha - alpha = 1. This answers a question posed by Janson [8].
引用
收藏
页码:1 / 19
页数:19
相关论文
共 15 条
[1]  
Alon N., 2015, PROBABILISTIC METHOD
[2]  
[Anonymous], 1960, Mathematical Proceedings of the Cambridge Philosophical Society, DOI DOI 10.1017/S0305004100034241
[3]  
Dembo A., 1998, Large Deviation Techniques and Applications
[4]  
DEVROYE L, 1987, ACTA INFORM, V24, P277, DOI 10.1007/BF00265991
[5]   CORRELATION INEQUALITIES ON SOME PARTIALLY ORDERED SETS [J].
FORTUIN, CM ;
KASTELEY.PW ;
GINIBRE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (02) :89-&
[6]  
GRIMMETT G, 1999, SERIES COMPREHENSIVE, V321
[7]   The weight and hopcount of the shortest path in the complete graph with exponential weights [J].
Hooghiemstra, Gerard ;
Van Mieghem, Piet .
COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (04) :537-548
[8]   One, two and three times log n/n for paths in a complete graph with random weights [J].
Janson, S .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (04) :347-361
[9]   NOTE ON THE HEIGHTS OF RANDOM RECURSIVE TREES AND RANDOM M-ARY SEARCH-TREES [J].
PITTEL, B .
RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (02) :337-347
[10]  
Robbins H., 1955, Amer. Math. Monthly, V62, P26, DOI [10.2307/2308012, DOI 10.2307/2308012]