Coexistence of Two-Dimensional Attractors in Border Collision Normal Form

被引:3
作者
Wong, Chi Hong [1 ]
Yang, Xue [1 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300072, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2019年 / 29卷 / 09期
关键词
Border collision bifurcation; piecewise smooth system; normal form; attractors; multistability; CONTINUOUS INVARIANT-MEASURES; BIFURCATIONS;
D O I
10.1142/S0218127419501268
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The two-dimensional border collision normal form is considered. It is known that multiple attractors can exist in this piecewise smooth system. We show that in appropriate parameter regions there can be a robust transition from a stable fixed point to multiple coexisting attractors with toological dimensions equal to two.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Two-dimensional homogeneous cubic systems: Classification and normal forms. I [J].
Basov V.V. .
Vestnik St. Petersburg University: Mathematics, 2016, 49 (2) :99-110
[42]   Two-Dimensional Homogeneous Cubic Systems: Classification and Normal Forms-VI [J].
Basov, V. V. ;
Chermnykh, A. S. .
VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2020, 53 (03) :248-260
[43]   Chaotic dynamics for two-dimensional tent maps [J].
Pumarino, Antonio ;
Angel Rodriguez, Jose ;
Carles Tatjer, Joan ;
Vigil, Enrique .
NONLINEARITY, 2015, 28 (02) :407-434
[44]   Coexistence of Hidden Attractors in the Smooth Cubic Chua's Circuit with Two Stable Equilibria [J].
Ahmad, Irfan ;
Srisuchinwong, Banlue ;
Jamil, Muhammad Usman .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (04)
[45]   Dynamical Analysis of Two-Dimensional Memristor Cosine Map [J].
Han, Xintong ;
Bi, Xiuguo ;
Sun, Bo ;
Ren, Lujie ;
Xiong, Li .
FRONTIERS IN PHYSICS, 2022, 10
[46]   Border collision bifurcations in one-dimensional linear-hyperbolic maps [J].
Gardini, Laura ;
Tramontana, Fabio ;
Sushko, Iryna .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 81 (04) :899-914
[47]   Coexistence of multiscroll chaotic attractors in two coupled inertial Hopfield neurons: numerical simulations and experiment [J].
Sriram, Sridevi ;
Danao, Adile Adoum ;
Fonzin, Theophile Fozin ;
Rajagopal, Karthikeyan ;
Kengne, Jacques .
PHYSICA SCRIPTA, 2022, 97 (12)
[48]   A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields [J].
Robert L. Bryant ;
Gianni Manno ;
Vladimir S. Matveev .
Mathematische Annalen, 2008, 340 :437-463
[49]   Border collision bifurcations in discontinuous one-dimensional linear-hyperbolic maps [J].
Tramontana, Fabio ;
Gardini, Laura .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1414-1423
[50]   Chaos and information in two-dimensional turbulence [J].
Clark, Daniel ;
Tarra, Lukas ;
Berera, Arjun .
PHYSICAL REVIEW FLUIDS, 2020, 5 (06)