Coexistence of Two-Dimensional Attractors in Border Collision Normal Form

被引:3
作者
Wong, Chi Hong [1 ]
Yang, Xue [1 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300072, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2019年 / 29卷 / 09期
关键词
Border collision bifurcation; piecewise smooth system; normal form; attractors; multistability; CONTINUOUS INVARIANT-MEASURES; BIFURCATIONS;
D O I
10.1142/S0218127419501268
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The two-dimensional border collision normal form is considered. It is known that multiple attractors can exist in this piecewise smooth system. We show that in appropriate parameter regions there can be a robust transition from a stable fixed point to multiple coexisting attractors with toological dimensions equal to two.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Two-Dimensional Homogeneous Cubic Systems: Classification and Normal Forms—VI [J].
V. V. Basov ;
A. S. Chermnykh .
Vestnik St. Petersburg University, Mathematics, 2020, 53 :248-260
[32]   Two-dimensional homogeneous cubic systems: Classification and normal forms: IV [J].
Basov V.V. ;
Chermnykh A.S. .
Vestnik St. Petersburg University, Mathematics, 2017, 50 (3) :217-234
[33]   Two-Dimensional Homogeneous Cubic Systems: Classification and Normal Forms II [J].
Basov, V. V. .
VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2016, 49 (03) :204-218
[34]   Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms - V [J].
Basov, V. V. ;
Chermnykh, A. S. .
VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2018, 51 (04) :327-342
[35]   Two-dimensional homogeneous cubic systems: Classification and normal forms–III [J].
Basov V.V. ;
Chermnykh A.S. .
Vestnik St. Petersburg University, Mathematics, 2017, 50 (2) :97-110
[36]   Chaos in the border-collision normal form: A computer-assisted proof using induced maps and invariant expanding cones [J].
Glendinning, P. A. ;
Simpson, D. J. W. .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 434
[37]   Normal forms near two-dimensional resonance tori for the multidimensional anharmonic oscillator [J].
Dobrokhotov, SY ;
Poteryakhin, MA .
MATHEMATICAL NOTES, 2004, 76 (5-6) :653-664
[38]   Microlocal normal forms for regular fully nonlinear two-dimensional control systems [J].
Ulysse Serres .
Proceedings of the Steklov Institute of Mathematics, 2010, 270 :240-245
[39]   Normal Forms near Two-Dimensional Resonance Tori for the Multidimensional Anharmonic Oscillator [J].
S. Yu. Dobrokhotov ;
M. A. Poteryakhin .
Mathematical Notes, 2004, 76 :653-664
[40]   Microlocal normal forms for regular fully nonlinear two-dimensional control systems [J].
Serres, Ulysse .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 270 (01) :240-245