Determinant representation of Darboux transformation for the AKNS system

被引:94
作者
He Jingsong [1 ]
Zhang Ling [1 ]
Cheng Yi [1 ]
Li Yishen [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Anhua 230026, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2006年 / 49卷 / 12期
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
darboux transformation; AKNS system (Ablowitz-Kaup-Newell-Segur System); determinant; soliton surface;
D O I
10.1007/s11425-006-2025-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The n-fold Darbouxtransform (DT) is a 2x2 matrix for the Ablowitz-Kaup-Newell-Segur (AKNS) system. In this paper, each element of this matrix is expressed by 2n + 1 ranks' determinants. Using these formulae, the determinant expressions of eigenfunctions generated by the n-fold DT are obtained. Furthermore, we give out the explicit forms of the n-soliton surface of the Nonlinear Schrodinger Equation (NLS) by the determinant of eigenfunctions.
引用
收藏
页码:1867 / 1878
页数:12
相关论文
共 24 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[3]  
BOBENKO AI, 1994, HARMONIC MAPS INTEGR, P83
[4]   SOLVING THE KP HIERARCHY BY GAUGE TRANSFORMATIONS [J].
CHAU, LL ;
SHAW, JC ;
YEN, HC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :263-278
[5]   EXACT SOLUTION TO LOCALIZED-INDUCTION-APPROXIMATION EQUATION MODELING SMOKE RING MOTION [J].
CIESLINSKI, J ;
GRAGERT, PKH ;
SYM, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (13) :1507-1510
[6]  
CIESLINSKI J, 1991, J MATH PHYS, V32, P2395, DOI 10.1063/1.529165
[7]   DETERMINANTS OF MATRICES OVER NONCOMMUTATIVE RINGS [J].
GELFAND, IM ;
RETAKH, VS .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (02) :91-102
[8]  
GU CH, 1987, LETT MATH PHYS, V13, P179, DOI 10.1007/BF00423444
[9]  
Gu CH., 1999, DARBOUX TRANSFORMATI
[10]   The determinant representation of the gauge transformation operators [J].
He, JS ;
Li, YS ;
Cheng, Y .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (04) :475-486