Differentiation and Passivity for Control of Brayton-Moser Systems

被引:32
作者
Kosaraju, Krishna Chaitanya [1 ]
Cucuzzella, Michele [2 ]
Scherpen, Jacquelien M. A. [2 ]
Pasumarthy, Ramkrishna [3 ,4 ]
机构
[1] Univ Notre Dame, Dept Elect Engn, Fitzpatrick Hall Engn, Notre Dame, IN 46556 USA
[2] Univ Groningen, Fac Sci & Engn, Jan C Wilems Ctr Syst & Control, ENTEG, NL-9747 AG Groningen, Netherlands
[3] Indian Inst Technol Madras, Dept Elect Engn, Chennai 600036, Tamil Nadu, India
[4] Indian Inst Technol Madras, Robert Bosch Ctr Data Sci & Artificial Intelligen, Chennai 600036, Tamil Nadu, India
关键词
RLC circuits; Voltage control; Control systems; Integrated circuit modeling; Inductors; Switching circuits; Lyapunov methods; Brayton– Moser (BM) systems; dc networks; passivity-based control (PBC); power converters; resistive– inductive– capacitive (RLC) circuits; POWER; ENERGY;
D O I
10.1109/TAC.2020.2994317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article deals with a class of resistive-inductive-capacitive (RLC) circuits and switched RLC (s-RLC) circuits modeled in the Brayton-Moser framework. For this class of systems, new passivity properties using a Krasovskii-type Lyapunov function as storage function are presented, where the supply rate is function of the system states, inputs, and their first time derivatives. Moreover, after showing the integrability property of the port-variables, two simple control methodologies called output shaping and input shaping are proposed for regulating the voltage in RLC and s-RLC circuits. Global asymptotic stability is theoretically proved for both the proposed control methodologies. Moreover, robustness with respect to load uncertainty is ensured by the input shaping methodology. The applicability of the proposed methodologies is illustrated by designing voltage controllers for dc-dc converters and dc networks.
引用
收藏
页码:1087 / 1101
页数:15
相关论文
共 43 条
[1]   Geometric modeling of nonlinear RLC circuits [J].
Blankenstein, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (02) :396-404
[2]   A constructive procedure for energy shaping of port-Hamiltonian systems [J].
Borja, Pablo ;
Cisneros, Rafael ;
Ortega, Romeo .
AUTOMATICA, 2016, 72 :230-234
[3]  
BRAYTON R. K., 1964, Q. Appl. Math, V22, P81, DOI DOI 10.1090/QAM/169747
[4]  
Brayton R.K., 1964, Quart. Appl. Math, V22, P1, DOI [10.1090/qam/169746, DOI 10.1090/QAM/169746]
[5]  
Broer HW, 2010, HANDBOOK OF DYNAMICAL SYSTEMS, VOL 3, P1
[6]   Transient Stability Guarantees for Ad Hoc DC Microgrids [J].
Cavanagh, Kathleen ;
Belk, Julia A. ;
Turitsyn, Konstantin .
IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (01) :139-144
[7]  
Chandrasekar A., 2014, P 21 INT S MATH THEO
[8]   A Passivity-Based Power-Shaping Control of Building HVAC Systems [J].
Chinde, V. ;
Kosaraju, K. C. ;
Kelkar, A. ;
Pasumarthy, R. ;
Sarkar, S. ;
Singh, N. M. .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2017, 139 (11)
[9]  
Cucuzzella M, 2019, IEEE DECIS CONTR P, P8435, DOI 10.1109/CDC40024.2019.9029657
[10]   Distributed Passivity-Based Control of DC Microgrids [J].
Cucuzzella, Michele ;
Kosaraju, Krishna C. ;
Scherpen, Jacquelien M. A. .
2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, :652-657