ISOMETRIC IMMERSIONS INTO Sn x R AND Hn x R AND APPLICATIONS TO MINIMAL SURFACES

被引:65
作者
Daniel, Benoit [1 ]
机构
[1] Univ Paris 07, Inst Math Jussieu, Paris, France
关键词
Isometric immersion; minimal surface; Gauss and Codazzi equations; integrable distribution; MEAN-CURVATURE ONE; HYPERBOLIC SPACE; PRODUCT;
D O I
10.1090/S0002-9947-09-04555-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a necessary and sufficient condition for an n-dimensional Riemannian manifold to be isometrically immersed in S-n x R or H-n x R in terms of its first and second fundamental forms and of the projection of the vertical vector field on its tangent plane. We deduce the existence of a one-parameter family of isometric minimal deformations of a given minimal surface in S-2 x R or H-2 x R, obtained by rotating the shape operator.
引用
收藏
页码:6255 / 6282
页数:28
相关论文
共 18 条
[1]   A Hopf differential for constant mean curvature surfaces in S2 x R and H2 x R [J].
Abresch, U ;
Rosenberg, H .
ACTA MATHEMATICA, 2004, 193 (02) :141-174
[2]  
BRYANT R, 1987, ASTERISQUE, P353
[3]  
BRYANT RL, 1987, ASTERISQUE, P321
[4]  
Do Carmo M. P., 2013, Riemannian Geometry, Mathematics: Theory & Applications
[5]  
Earp RS, 2005, ILLINOIS J MATH, V49, P1323
[6]  
Earp RS, 2001, ILLINOIS J MATH, V45, P371
[7]   Minimal surfaces of Riemann type in three-dimensional product manifolds [J].
Hauswirth, L .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 224 (01) :91-117
[8]   Associate and conjugate minimal immersions in M x R [J].
Hauswirth, Laurent ;
Earp, Ricardo Sa ;
Toubiana, Eric .
TOHOKU MATHEMATICAL JOURNAL, 2008, 60 (02) :267-286
[9]  
Karcher H., 2005, CLAY MATH P, V2, P137
[10]  
Meeks WH, 2005, COMMENT MATH HELV, V80, P811