Microwave non-thermal effect reduces ELISA timing to less than 5 minutes

被引:28
作者
Ahirwar, Rajesh [1 ,2 ]
Tanwar, Swati [1 ]
Bora, Utpal [3 ]
Nahar, Pradip [1 ,2 ]
机构
[1] CSIR, Inst Genom & Integrat Biol, Mall Rd, Delhi 110007, India
[2] CSIR, IGIB, Acad Sci & Innovat Res, Delhi 110007, India
[3] Indian Inst Technol, Dept Biosci & Bioengn, Gauhati 781039, Assam, India
来源
RSC ADVANCES | 2016年 / 6卷 / 25期
关键词
IMMUNOSORBENT-ASSAY PROCEDURE; COVALENT IMMOBILIZATION; ORGANIC-SYNTHESIS; IRRADIATION; PROTEINS; SURFACE; HEAT; TOOL; DNA;
D O I
10.1039/c5ra27261k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This report demonstrates that microwave-mediated ELISA, which occurs in less than 5 minutes, is due to a microwave non-thermal or a microwave-specific effect rather than the microwave heating effect. To decipher the non-thermal effect, we have designed a system that mimics the time-dependent temperature rise of a reaction mixture or buffer in the wells of a polystyrene microtiter plate similar to that of microwave exposure. This system is used as an alternative to the microwave thermal effect ( microwave-thermal-alternate or MTA). We have carried out ELISA for the detection of human IgG in a time-dependent manner under microwave irradiation in a microwave oven, and by thermal incubation by a specially designed MTA. ELISA results carried out by microwave exposure in 4 min 40 s are akin to 18 h conventional ELISA, whereas no significant ELISA values are obtained by microwave-thermal-alternate, illustrating the predominance of the microwave non-thermal effect over the microwave thermal effect in microwave-mediated ELISA. We postulate that the microwave specific effect is a microwave catalytic effect acting by lowering the activation energy of reactants.
引用
收藏
页码:20850 / 20857
页数:8
相关论文
共 28 条
  • [1] Belyaev I. Y., 2005, MICROWAVE REV, V11, P13, DOI DOI 10.1080/15368370500381844
  • [2] Betskii OV, 2000, CRIT REV BIOMED ENG, V28, P247, DOI 10.1615/CritRevBiomedEng.v28.i12.420
  • [3] Microwave chemistry for inorganic nanomaterials synthesis
    Bilecka, Idalia
    Niederberger, Markus
    [J]. NANOSCALE, 2010, 2 (08) : 1358 - 1374
  • [4] Bogdal D., 2007, MICROWAVE ENHANCED P
  • [5] A simple method for functionalization of cellulose membrane for covalent immobilization of biomolecules
    Bora, U
    Kannan, K
    Nahar, P
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2005, 250 (1-2) : 215 - 222
  • [6] Heat-mediated enzyme-linked immunosorbent assay procedure on a photoactivated surface
    Bora, U
    Kannan, K
    Nahar, P
    [J]. JOURNAL OF IMMUNOLOGICAL METHODS, 2004, 293 (1-2) : 43 - 50
  • [7] Microwave energy: a versatile tool for the biosciences
    Collins, Jonathan M.
    Leadbeater, Nicholas E.
    [J]. ORGANIC & BIOMOLECULAR CHEMISTRY, 2007, 5 (08) : 1141 - 1150
  • [8] Can electromagnetic fields influence the structure and enzymatic digest of proteins? A critical evaluation of microwave-assisted proteomics protocols
    Damm, Markus
    Nusshold, Christoph
    Cantillo, David
    Rechberger, Gerald N.
    Gruber, Karl
    Sattler, Wolfgang
    Kappe, C. Oliver
    [J]. JOURNAL OF PROTEOMICS, 2012, 75 (18) : 5533 - 5543
  • [9] Microwave-mediated enzymatic modifications of DNA
    Das, Rakha Hari
    Ahirwar, Rajesh
    Kumar, Saroj
    Nahar, Pradip
    [J]. ANALYTICAL BIOCHEMISTRY, 2015, 471 : 26 - 28
  • [10] Microwaves in organic synthesis.: Thermal and non-thermal microwave effects
    de la Hoz, A
    Díaz-Ortiz, A
    Moreno, A
    [J]. CHEMICAL SOCIETY REVIEWS, 2005, 34 (02) : 164 - 178