STATISTICALLY HIDING COMMITMENTS AND STATISTICAL ZERO-KNOWLEDGE ARGUMENTS FROM ANY ONE-WAY FUNCTION

被引:63
作者
Haitner, Iftach [1 ]
Nguyen, Minh-Huyen [2 ]
Ong, Shien Jin [2 ]
Reingold, Omer [3 ]
Vadhan, Salil [2 ]
机构
[1] Microsoft Res, Cambridge, MA 02142 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Weizmann Inst Sci, Fac Math & Comp Sci, IL-76100 Rehovot, Israel
关键词
cryptography; statistically hiding commitments; statistical zero-knowledge argument systems; one-way functions; interactive hashing; SECRECY; PROOFS; SECURE; NP;
D O I
10.1137/080725404
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a construction of statistically hiding commitment schemes (those in which the hiding property holds against even computationally unbounded adversaries) under the minimal complexity assumption that one-way functions exist. Consequently, one-way functions suffice to give statistical zero-knowledge arguments for any NP statement ( whereby even a computationally unbounded adversarial verifier learns nothing other than the fact that the assertion being proven is true, and no polynomial-time adversarial prover can convince the verifier of a false statement). These results resolve an open question posed by Naor et al. [J. Cryptology, 11 (1998), pp. 87-108].
引用
收藏
页码:1153 / 1218
页数:66
相关论文
共 40 条
[1]   PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION [J].
BENNETT, CH ;
BRASSARD, G ;
ROBERT, JM .
SIAM JOURNAL ON COMPUTING, 1988, 17 (02) :210-229
[2]  
Boyar J. F., 1990, Journal of Cryptology, V2, P63, DOI 10.1007/BF00204448
[3]   MINIMUM DISCLOSURE PROOFS OF KNOWLEDGE [J].
BRASSARD, G ;
CHAUM, D ;
CREPEAU, C .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1988, 37 (02) :156-189
[4]   CONSTANT-ROUND PERFECT ZERO-KNOWLEDGE COMPUTATIONALLY CONVINCING PROTOCOLS [J].
BRASSARD, G ;
CREPEAU, C ;
YUNG, M .
THEORETICAL COMPUTER SCIENCE, 1991, 84 (01) :23-52
[5]   Oblivious transfer with a memory-bounded receiver [J].
Cachin, C ;
Crepeau, C ;
Marcil, J .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :493-502
[6]  
CHAUM D, 1988, LECT NOTES COMPUT SC, V293, P87
[7]  
COLDREICH O, 2001, FDN CRYPTOGRAPHY BAS
[8]  
Crépeau C, 2006, LECT NOTES COMPUT SC, V4004, P201
[9]   Statistical secrecy and multibit commitments [J].
Damgard, IB ;
Pedersen, TP ;
Pfitzmann, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) :1143-1151
[10]   NEW DIRECTIONS IN CRYPTOGRAPHY [J].
DIFFIE, W ;
HELLMAN, ME .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (06) :644-654