Frequency domain identification of ARX models in the presence of additive input-output noise

被引:1
|
作者
Soverini, Umberto [1 ]
Soderstrom, Torsten [2 ]
机构
[1] Univ Bologna, Dept Elect Elect & Informat Engn, Bologna, Italy
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
System identification; ARX models; Frisch Scheme; Discrete Fourier Transform; LEAST-SQUARES; FRISCH SCHEME;
D O I
10.1016/j.ifacol.2017.08.1023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a new approach for identifying ARX models from a finite number of measurements, in presence of additive and uncorrelated white noise. The proposed algorithm is based on some theoretical results concerning the so-called dynamic Frisch Scheme. As a major novelty, the proposed approach deals with frequency domain data. In some aspects, the method resembles the characteristics of other identification algorithms, originally developed in the time domain. The proposed method is compared with other techniques by means of Monte Carlo simulations. The benefits of filtering the data and using only part of the frequency domain is highlighted by means of a numerical example. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6226 / 6231
页数:6
相关论文
共 50 条
  • [1] Frequency domain identification of FIR models in the presence of additive input-output noise
    Soverini, Umberto
    Soderstrom, Torsten
    AUTOMATICA, 2020, 115
  • [2] Identification of ARX and ARARX Models in the Presence of Input and Output Noises
    Diversi, Roberto
    Guidorzi, Roberto
    Soverini, Umberto
    EUROPEAN JOURNAL OF CONTROL, 2010, 16 (03) : 242 - 255
  • [3] Discussion on: "Identification of ARX and ARARX Models in the Presence of Input and Output Noises"
    Agueero, Juan C.
    Yuz, Juan I.
    Goodwin, Graham C.
    EUROPEAN JOURNAL OF CONTROL, 2010, 16 (03) : 256 - 257
  • [4] Identification of noisy input-output FIR models with colored output noise
    Barbieri, Matteo
    Diversi, Roberto
    IFAC PAPERSONLINE, 2020, 53 (02): : 901 - 906
  • [5] Modeling a MIMO System with an ARX model and input-output data with noise
    Sumalatha, V.
    Rani, K. Sandhya
    Krishna, M. Hari
    Reddy, K. Raja Shekar
    2015 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2015, : 620 - 624
  • [6] Frequency Domain Maximum Likelihood Identification With Gaussian Input-Output Uncertainty
    Verbeke, Dieter
    Khorasani, Masoud Moravej
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (01): : 109 - 114
  • [7] Frequency domain identification of complex sinusoids in the presence of additive noise
    Soverini, Umberto
    Soderstrom, Torsten
    IFAC PAPERSONLINE, 2017, 50 (01): : 6244 - 6250
  • [8] Output-only identification of input-output models
    Aljanaideh, Khaled F.
    Bernstein, Dennis S.
    AUTOMATICA, 2020, 113
  • [9] Approximate SEM identification of polynomial input-output models
    Farina, Marcello
    Piroddi, Luigi
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 7040 - 7045
  • [10] Maximum likelihood identification of noisy input-output models
    Diversi, Roberto
    Guidorzi, Roberto
    Soverini, Umberto
    AUTOMATICA, 2007, 43 (03) : 464 - 472