Estimation of δ = P(X < Y) for Burr XII distribution based on the progressively first failure-censored samples

被引:60
作者
Lio, Y. L. [1 ]
Tsai, Tzong-Ru [2 ]
机构
[1] Univ S Dakota, Dept Math Sci, Vermillion, SD 57069 USA
[2] Tamkang Univ, Dept Stat, New Taipei 25137, Taiwan
关键词
first failure-censoring; Fisher information; parametric bootstrap; maximum-likelihood estimate; progressive type II censoring; STRESS-STRENGTH; RELIABILITY; P(Y-LESS-THAN-X); INFERENCE; MODEL;
D O I
10.1080/02664763.2011.586684
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X and Y have two-parameter Burr XII distributions. The maximum-likelihood estimator of delta = P(X < Y) is studied under the progressively first failure-censored samples. Three confidence intervals of d are constructed by using an asymptotic distribution of the maximum-likelihood estimator of d and two boot-strapping procedures, respectively. Some computational results from intensive simulations are presented. An illustrative example is provided to demonstrate the application of the proposed method.
引用
收藏
页码:309 / 322
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 2012, The Jackknife and Bootstrap
[2]  
[Anonymous], 1993, An introduction to the bootstrap
[3]  
[Anonymous], 2003, STRESS STRENGTH MODE
[4]  
Balakrishnan N., 2000, STAT IND TECHNOL
[5]   FAILURE-CENSORED RELIABILITY SAMPLING PLANS FOR THE EXPONENTIAL-DISTRIBUTION [J].
BALASOORIYA, U .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 52 (04) :337-349
[6]  
Birnbaum ZW., 1956, P 3 BERK S MATH STAT, V1, P13, DOI DOI 10.1525/9780520313880-005
[7]  
Efron B., 1982, SOC IND APPL MATH CB, V38, DOI DOI 10.1137/1.9781611970319
[8]   A note on inference for P(X &lt; Y) for right truncated exponentially distributed data [J].
Jiang, L. ;
Wong, A. C. M. .
STATISTICAL PAPERS, 2008, 49 (04) :637-651
[9]   Bayesian estimation of P (Y &lt; X) from Burr-type X model containing spurious observations [J].
Kim, Chansoo ;
Chung, Younshik .
STATISTICAL PAPERS, 2006, 47 (04) :643-651
[10]   Estimation of P[Y &lt; X] for generalized exponential distribution [J].
Kundu, D ;
Gupta, RD .
METRIKA, 2005, 61 (03) :291-308